首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sixteen newly diagnosed non insulin dependent diabetic patients were treated for 3 months with an individual energy restricted diet. The effect on weight, hyperglycaemia and insulin response to oral glucose was measured in all subjects, and in 7, peripheral insulin resistance was estimated using a hyperinsulinaemic glucose clamp at two insulin infusion rates (40 and 400 mU m-2 X min-1). After diet, fasting plasma glucose fell from 12.0 +/- 0.7 mmol/l (mean +/- SEM) to 7.4 +/- 0.5 mmol/l (P less than 0.001) and weight fell from 92.9 +/- 4.2 kg to 85.0 +/- 3.1 kg (P less than 0.001). The plasma insulin response to oral glucose was unchanged after diet therapy. Insulin induced glucose disposal (M) was also unaffected by diet at insulin infusion rates of 40 mU m-2 X min-1 (12.5 +/- 1.5 mumol X kg-1 X min-1 vs 15.7 +/- 1.6 mumol X kg-1 X min-1) and 400 mU m-2 X min-1 (49.5 +/- 2.7 mumol X kg-1 X min-1 vs 55.1 +/- 2.5 mumol X kg-1 X min-1). These results show that 3 months reduction of energy consumption with weight loss in newly diagnosed non insulin dependent diabetics improves B-cell responsiveness to glucose but has no effect on liver glucose output or on peripheral insulin action.  相似文献   

2.
To investigate the effect of elevated plasma free fatty acid (FFA) concentrations on splanchnic glucose uptake (SGU), we measured SGU in nine healthy subjects (age, 44 +/- 4 yr; body mass index, 27.4 +/- 1.2 kg/m(2); fasting plasma glucose, 5.2 +/- 0.1 mmol/l) during an Intralipid-heparin (LIP) infusion and during a saline (Sal) infusion. SGU was estimated by the oral glucose load (OGL)-insulin clamp method: subjects received a 7-h euglycemic insulin (100 mU x m(-2) x min(-1)) clamp, and a 75-g OGL was ingested 3 h after the insulin clamp was started. After glucose ingestion, the steady-state glucose infusion rate (GIR) during the insulin clamp was decreased to maintain euglycemia. SGU was calculated by subtracting the integrated decrease in GIR during the period after glucose ingestion from the ingested glucose load. [3-(3)H]glucose was infused during the initial 3 h of the insulin clamp to determine rates of endogenous glucose production (EGP) and glucose disappearance (R(d)). During the 3-h euglycemic insulin clamp before glucose ingestion, R(d) was decreased (8.8 +/- 0.5 vs. 7.6 +/- 0.5 mg x kg(-1) x min(-1), P < 0.01), and suppression of EGP was impaired (0.2 +/- 0.04 vs. 0.07 +/- 0.03 mg x kg(-1) x min(-1), P < 0.01). During the 4-h period after glucose ingestion, SGU was significantly increased during the LIP vs. Sal infusion study (30 +/- 2 vs. 20 +/- 2%, P < 0.005). In conclusion, an elevation in plasma FFA concentration impairs whole body glucose R(d) and insulin-mediated suppression of EGP in healthy subjects but augments SGU.  相似文献   

3.
The effect of physiologic elevations of plasma hydroxybutyrate induced by the infusion of sodium D,L-beta-hydroxybutyrate (15 mumol X kg-1 X min-1) on carbohydrate metabolism was examined with the euglycemic insulin clamp technique in nine healthy volunteers. Plasma insulin concentration was acutely raised and maintained at 126 +/- 6 microU/ml and plasma glucose was held constant at the fasting level by a variable glucose infusion. Glucose uptake of 6.53 +/- 0.80 mg X kg-1 X min-1 was unchanged by hyperketonemia when compared with an intraindividual control study using saline instead of beta-OH-butyrate infusion (6.26 +/- 0.59 mg X kg-1 X min-1). In studies, in which the degree of metabolic alkalosis accompanying butyrate infusion was mimicked by the continuous administration of bicarbonate, glucose uptake was also unaffected (6.25 +/- 0.45 mg X kg-1 X min-1). Furthermore, hyperketonemia had no effect on basal glucose production or the suppression of hepatic glucose production following hyperinsulinemia. It is concluded that moderate elevations in plasma beta-hydroxy-butyrate do not alter hepatic or peripheral glucose metabolism.  相似文献   

4.
We measured splanchnic and leg glucose uptake during prolonged (i.e., 15 hours), moderate hyperglycemia-hyperinsulinemia (clamp). Plasma free fatty acid (FFA) concentration was maintained at basal concentration during the clamp via infusion of exogenous lipids and heparin in healthy volunteers to create a metabolic profile similar to glucose intolerance (i.e., hyperglycemia-hyperinsulinemia with elevated FFA concentration). During the clamp, glucose was infused at an average rate of 49 +/- 4 micromol/kg/min, which resulted in a plasma glucose concentration of 8.8 +/- 0.5 mmol/L compared with a concentration of 4.4 +/- 0.2 mmol/L in the basal state (P < 0.05). Insulin concentration increased from 5.5 +/- 1.1 microU/mL (basal) to 31.3 +/- 12.7 microU/mL (clamp; P < 0.05), whereas plasma FFA concentration was similar in the two conditions (3.9 +/- 0.5 mmol/L and 4.1 +/- 0.5 mmol/L, basal and clamp, respectively). Glucose balance across the splanchnic region switched from net release (-5.8 +/- 0.7 micromol/kg/min) in the basal state to net uptake in the clamp (19.8 +/- 3.7 micromol/kg/min; P < 0.05) and accounted for approximately 40% of the infused glucose. Glucose uptake across the leg was 0.7 +/- 0.2 micromol/kg/min (basal) and 5.5 +/- 2.2 micromol/kg/min (clamp; P < 0.05). In summary, tissues in the splanchnic region (i.e., liver) are important for disposal of intravenously infused glucose during prolonged, moderate hyperglycemia-hyperinsulinemia. Accelerated hepatic glucose uptake may disrupt normal liver metabolism, with potentially dangerous consequences for the patient. Measures to control systemic glucose concentration may be necessary to prevent excessive glucose disposal in the liver.  相似文献   

5.
The aim of this study was to investigate the influence of the arteriovenous (A-V) gradient in blood glucose concentrations at low and high insulin levels on the determination of glucose requirements during glucose clamping in 9 healthy, insulin sensitive, male volunteers. In a random order two clamps were performed, once using arterialised venous blood (A Clamp, mean pO2 = 11.5 +/- 0.36 kPa, 86 +/- 2.7 mmHg), and once using venous blood (V clamp, mean pO2 = 7.9 +/- 0.21 kPa, 59 +/- 1.6 mmHg). Insulin levels were maintained at 48 +/- 2.4 mU/l from 0-180 min and at 1054 +/- 114 mU/l from 180-360 min. Elevation of insulin levels caused a significant rise of the A-V gradient: from 0.3 +/- 0.1 to 0.5 +/- 0.1 mmol/l (p < 0.05) and from 0.2 +/- 0.1 to 0.3 +/- 0.1 mmol/l (p < 0.05) during the A and V clamps, respectively. Despite these A-V glucose gradients no significant differences were found for the glucose requirements during the last 30 min of each period of insulin infusion between the A and V clamps: 43.70 +/- 3.4 vs 44.8 +/- 2.8 mumol.kg-1.min-1 during the low insulin level and 77.3 +/- 5.0 vs 76.2 +/- 3.4 mumol.kg-1.min-1 during the high insulin level. We conclude that the A-V glucose gradient, even at high insulin levels, does not influence the assessment of glucose requirements to a measurable extent, allowing the use of the simpler technique of taking venous rather than arterialised venous blood for the measurements of glucose levels during glucose clamping.  相似文献   

6.
Hepatic and extrahepatic insulin sensitivity was assessed in six healthy humans from the insulin infusion required to maintain an 8 mmol/l glucose concentration during hyperglycemic pancreatic clamp with or without infusion of 16.7 micromol. kg(-1). min(-1) fructose. Glucose rate of disappearance (GR(d)), net endogenous glucose production (NEGP), total glucose output (TGO), and glucose cycling (GC) were measured with [6,6-(2)H(2)]- and [2-(2)H(1)]glucose. Hepatic glycogen synthesis was estimated from uridine diphosphoglucose (UDPG) kinetics as assessed with [1-(13)C]galactose and acetaminophen. Fructose infusion increased insulin requirements 2.3-fold to maintain blood glucose. Fructose infusion doubled UDPG turnover, but there was no effect on TGO, GC, NEGP, or GR(d) under hyperglycemic pancreatic clamp protocol conditions. When insulin concentrations were matched during a second hyperglycemic pancreatic clamp protocol, fructose administration was associated with an 11.1 micromol. kg(-1). min(-1) increase in TGO, a 7.8 micromol. kg(-1). min(-1) increase in NEGP, a 2.2 micromol. kg(-1). min(-1) increase in GC, and a 7.2 micromol. kg(-1). min(-1) decrease in GR(d) (P < 0. 05). These results indicate that fructose infusion induces hepatic and extrahepatic insulin resistance in humans.  相似文献   

7.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are both incretin hormones regulating postprandial insulin secretion. Their relative importance in this respect under normal physiological conditions is unclear, however, and the aim of the present investigation was to evaluate this. Eight healthy male volunteers (mean age: 23 (range 20-25) years; mean body mass index: 22.2 (range 19.3-25.4) kg/m2) participated in studies involving stepwise glucose clamping at fasting plasma glucose levels and at 6 and 7 mmol/l. Physiological amounts of either GIP (1.5 pmol/kg/min), GLP-1(7-36)amide (0.33 pmol/kg/min) or saline were infused for three periods of 30 min at each glucose level, with 1 h "washout" between the infusions. On a separate day, a standard meal test (566 kcal) was performed. During the meal test, peak insulin concentrations were observed after 30 min and amounted to 223+/-27 pmol/l. Glucose+saline infusions induced only minor increases in insulin concentrations. GLP-1 and GIP infusions induced significant and similar increases at fasting glucose levels and at 6 mmol/l. At 7 mmol/l, further increases were seen, with GLP-1 effects exceeding those of GIP. Insulin concentrations at the end of the three infusion periods (60, 150 and 240 min) during the GIP clamp amounted to 53+/-5, 79+/-8 and 113+/-15 pmol/l, respectively. Corresponding results were 47+/-7, 95+/-10 and 171+/-21 pmol/l, respectively, during the GLP-1 clamp. C-peptide responses were similar. Total and intact incretin hormone concentrations during the clamp studies were higher compared to the meal test, but within physiological limits. Glucose infusion alone significantly inhibited glucagon secretion, which was further inhibited by GLP-1 but not by GIP infusion. We conclude that during normal physiological plasma glucose levels, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide contribute nearly equally to the incretin effect in humans, because their differences in concentration and potency outweigh each other.  相似文献   

8.
Defects in insulin secretion and/or action contribute to the hyperglycemia of stressed and diabetic patients, and we hypothesize that failure to suppress glucagon also plays a role. We examined the chronic impact of glucagon on glucose uptake in chronically catheterized conscious depancreatized dogs placed on 5 days of nutritional support (NS). For 3 days of NS, a variable intraportal infusion of insulin was given to maintain isoglycemia (approximately 120 mg/dl). On day 3 of NS, animals received a constant low infusion of insulin (0.4 mU.kg-1.min-1) and either no glucagon (CONT), basal glucagon (0.7 ng.kg-1.min-1; BasG), or elevated glucagon (2.4 ng.kg-1.min-1; HiG) for the remaining 2 days. Glucose in NS was varied to maintain isoglycemia. An additional group (HiG+I) received elevated insulin (1 mU.kg-1.min-1) to maintain glucose requirements in the presence of elevated glucagon. On day 5 of NS, hepatic substrate balance was assessed. Insulin and glucagon levels were 10+/-2, 9+/-1, 7+/-1, and 24+/-4 microU/ml, and 24+/-5, 39+/-3, 80+/-11, and 79+/-5 pg/ml, CONT, BasG, HiG, and HiG+I, respectively. Glucagon infusion decreased the glucose requirements (9.3+/-0.1, 4.6+/-1.2, 0.9+/-0.4, and 11.3+/-1.0 mg.kg-1.min-1). Glucose uptake by both hepatic (5.1+/-0.4, 1.7+/-0.9, -1.0+/-0.4, and 1.2+/-0.4 mg.kg-1.min-1) and nonhepatic (4.2+/-0.3, 2.9+/-0.7, 1.9+/-0.3, and 10.2+/-1.0 mg.kg-1.min-1) tissues decreased. Additional insulin augmented nonhepatic glucose uptake and only partially improved hepatic glucose uptake. Thus, glucagon impaired glucose uptake by hepatic and nonhepatic tissues. Compensatory hyperinsulinemia restored nonhepatic glucose uptake and partially corrected hepatic metabolism. Thus, persistent inappropriate secretion of glucagon likely contributes to the insulin resistance and glucose intolerance observed in obese and diabetic individuals.  相似文献   

9.
Portal infusion of glucose at rates approximating endogenous glucose production (EGP) causes paradoxical hypoglycemia in wild-type but not GLUT2 null mice, implying activation of a specific portal glucose sensor. To determine whether this occurs in humans, glucose containing [3-3H]glucose was infused intraduodenally at rates of 3.1 mg. kg-1. min-1 (n = 5), 1.55 mg. kg-1. min-1 (n = 9), or 0/0.1 mg. kg-1. min-1 (n = 9) for 7 h in healthy nondiabetic subjects. [6,6-2H2]glucose was infused intravenously to enable simultaneous measurement of EGP, glucose disappearance, and the rate of appearance of the intraduodenally infused glucose. Plasma glucose concentrations fell (P < 0.01) from 90 +/- 1 to 84 +/- 2 mg/dl during the 0/0.1 mg. kg-1. min-1 id infusions but increased (P < 0.001) to 104 +/- 5 and 107 +/- 3 mg/dl, respectively, during the 1.55 and 3.1 mg. kg-1. min-1 id infusions. In contrast, insulin increased (P < 0.05) during the 1.55 and 3.0 mg. kg-1. min-1 infusions, reaching a peak of 10 +/- 2 and 18 +/- 5 micro U/ml, respectively, by 2 h. Insulin concentrations then fell back to concentrations that no longer differed by study end (7 +/- 1 vs. 8 +/- 1 micro U/ml). This resulted in comparable suppression of EGP by study end (0.84 +/- 0.2 and 0.63 +/- 0.1 mg. kg-1. min-1). Glucose disappearance was higher (P < 0.01) during the final hour of the 3.1 than 1.55 mg. kg-1. min-1 id infusion (4.47 +/- 0.2 vs. 2.6 +/- 0.1 mg. kg-1. min-1), likely because of the slightly, but not significantly, higher glucose and insulin concentrations. We conclude that, in contrast to mice, selective portal glucose delivery at rates approximating EGP does not cause hypoglycemia in humans.  相似文献   

10.
Glucose infusion attenuates fatigue in rat plantaris muscle stimulated in situ, and this is associated with a better maintenance of electrical properties of the fiber membrane (Karelis AD, Péronnet F, and Gardiner PF. Exp Physiol 87: 585-592, 2002). The purpose of the present study was to test the hypothesis that elevated plasma insulin concentration due to glucose infusion ( approximately 900 pmol/l), rather than high plasma glucose concentration ( approximately 10-11 mmol/l), could be responsible for this phenomenon, because insulin has been shown to stimulate the Na+-K+ pump. The plantaris muscle was indirectly stimulated (50 Hz, for 200 ms, 5 V, every 2.7 s) via the sciatic nerve to perform concentric contractions for 60 min, while insulin (8 mU x kg-1x min-1: plasma insulin approximately 900 pmol/l) and glucose were infused to maintain plasma glucose concentration between 4 and 6 [6.2 +/- 0.4 mg x kg-1x min-1: hyperinsulinemic-euglycemic (HE)] or 10 and 12 mmol/l [21.7 +/- 1.1 mg. kg-1. min-1: hyperinsulinemic-hyperglycemic clamps (HH)] (6 rats/group). The reduction in submaximal dynamic force was significantly (P < 0.05) less with HH (-53%) than with HE and saline only (-66 and -70%, respectively). M-wave characteristics were also better maintained in the HH than in HE and control groups. These results demonstrate that the increase in insulin concentration is not responsible for the increase in muscle performance observed after the elevation of circulating glucose.  相似文献   

11.
We evaluated the acute effects of OXM on glucose metabolism in diet-induced insulin-resistant male C57Bl/6 mice. To determine the effects on glucose tolerance, mice were intraperitoneally injected with OXM (0.75, 2.5, or 7.5 nmol) or vehicle prior to an ip glucose tolerance test. OXM (0.75 nmol/h) or vehicle was infused during a hyperinsulinemic euglycemic clamp to quantify insulin action on glucose production and disposal. OXM dose-dependently improved glucose tolerance as estimated by AUC for glucose (OXM: 7.5 nmol, 1,564 +/- 460, P < 0.01; 2.5 nmol, 1,828 +/- 684, P < 0.01; 0.75 nmol, 2,322 +/- 303, P < 0.05; control: 2,790 +/- 222 mmol.l(-1).120 min). Insulin levels in response to glucose administration were higher in 7.5 nmol OXM-treated animals compared with controls. In basal clamp conditions, OXM increased EGP (82.2 +/- 14.7 vs. 39.9 +/- 5.7 micromol.min(-1).kg(-1), P < 0.001). During insulin infusion, insulin levels were twice as high in OXM-treated mice compared with controls (10.6 +/- 2.8 vs. 4.4 +/- 2.2 ng/ml, P < 0.01). Consequently, glucose infusion rate (118.6 +/- 30.8 vs. 38.8 +/- 26.4 microl/h, P < 0.001) and glucose disposal (88.1 +/- 13.0 vs. 45.2 +/- 6.9 micromol.min(-1).kg(-1), P < 0.001) were enhanced in mice that received OXM. In addition, glucose production was more suppressed during OXM infusion (35.7 +/- 15.5 vs. 15.8 +/- 11.4% inhibition, P < 0.05). However, if these data were expressed per unit concentration of circulating insulin, OXM did not affect insulin action on glucose disposal and production. These results indicate that OXM beneficially affects glucose metabolism in diet-induced insulin-resistant C57Bl/6 mice. It ameliorates glucose intolerance, most likely because it elevates glucose-induced plasma insulin concentrations. OXM does not appear to impact on insulin action.  相似文献   

12.
Acetate metabolism was studied in patients with insulin resistance. To evaluate the interaction between glucose and acetate metabolism, we measured acetate and glucose turnover with a hyperinsulinemic euglycemic clamp (hot clamp) in obese and diabetic patients with insulin resistance (n = 8) and in a control group with normal insulin sensitivity (n = 6). At baseline, acetate turnover and plasma concentrations were similar between the two groups (group means: 4.3 +/- 0.4 micromol x kg-1 x min-1 and 128.2 +/- 11.1 micromol/l). Acetate concentrations decreased in both groups with hyperinsulinemia but were significantly lower in the insulin-resistant group (20% vs. 12%, P < 0.05). After the hot clamp treatment, acetate turnover increased for the two groups and was higher in the group with normal insulin sensitivity: 8.1 +/- 0.7 vs. 5.5 +/- 0.5 micromol x kg-1 x min-1 (P < 0.001). No change related to insulin action was observed in either group in the percentage of acetate oxidation. This was approximately 70% of overall utilization at baseline and during the clamp. No correlation between glucose and acetate utilization was observed. Our results support the hypothesis that, like glucose metabolism, acetate metabolism is sensitive to insulin.  相似文献   

13.
The rate of liver glucokinase (GK) translocation from the nucleus to the cytoplasm in response to intraduodenal glucose infusion and the effect of physiological rises of plasma glucose and/or insulin on GK translocation were examined in 6-h-fasted conscious rats. Intraduodenal glucose infusion (28 mg.kg(-1).min(-1) after a priming dose at 500 mg/kg) elevated blood glucose levels (mg/dl) in the artery and portal vein from 90 +/- 3 and 87 +/- 3 to 154 +/- 4 and 185 +/- 4, respectively, at 10 min. At 120 min, the levels had decreased to 133 +/- 6 and 156 +/- 5, respectively. Plasma insulin levels (ng/ml) in the artery and the portal vein rose from 0.7 +/- 0.1 and 1.8 +/- 0.3 to 11.8 +/- 1.5 and 20.2 +/- 2.0 at 10 min, respectively, and 12.4 +/- 3.1 and 18.0 +/- 4.8 at 30 min, respectively. GK was rapidly exported from the nucleus as determined by measuring the ratio of the nuclear to the cytoplasmic immunofluorescence (N/C) of GK (2.9 +/- 0.3 at 0 min to 1.7 +/- 0.2 at 10 min, 1.5 +/- 0.1 at 20 min, 1.3 +/- 0.1 at 30 min, and 1.3 +/- 0.1 at 120 min). When plasma glucose (arterial; mg/dl) and insulin (arterial; ng/ml) levels were clamped for 30 min at 93 +/- 7 and 0.7 +/- 0.1, 81 +/- 5 and 8.9 +/- 1.3, 175 +/- 5 and 0.7 +/- 0.1, or 162 +/- 5 and 9.2 +/- 1.5, the N/C of GK was 3.0 +/- 0.5, 1.8 +/- 0.1, 1.5 +/- 0.1, and 1.2 +/- 0.1, respectively. The N/C of GK regulatory protein (GKRP) did not change in response to the intraduodenal glucose infusion or the rise in plasma glucose and/or insulin levels. The results suggest that GK but not GKRP translocates rapidly in a manner that corresponds with changes in the hepatic glucose balance in response to glucose ingestion in vivo. Additionally, the translocation of GK is induced by the postprandial rise in plasma glucose and insulin.  相似文献   

14.
Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that stimulates insulin secretion and decreases glucagon release. It has been hypothesized that GLP-1 also reduces glycemia independent of its effect on islet hormones. Based on preliminary evidence that GLP-1 has independent actions on endogenous glucose production, we undertook a series of experiments that were optimized to address this question. The effect of GLP-1 on glucose appearance (Ra) and glucose disposal (Rd) was measured in eight men during a pancreatic clamp that was performed by infusing octreotide to suppress secretion of islet hormones, while insulin and glucagon were infused at rates adjusted to maintain blood glucose near fasting levels. After stabilization of plasma glucose and equilibration of [3H]glucose tracer, GLP-1 was given intravenously for 60 min. Concentrations of insulin, C-peptide, and glucagon were similar before and during the GLP-1 infusion (115 +/- 14 vs. 113 +/- 11 pM; 0.153 +/- 0.029 vs. 0.156 +/- 0.026 nM; and 64.7 +/- 11.5 vs. 65.8 +/- 13.8 ng/l, respectively). With the initiation of GLP-1, plasma glucose decreased in all eight subjects from steady-state levels of 4.8 +/- 0.2 to a nadir of 4.1 +/- 0.2 mM. This decrease in plasma glucose was accounted for by a significant 17% decrease in Ra, from 22.6 +/- 2.8 to 19.1 +/- 2.8 micromol. kg-1. min-1 (P < 0.04), with no significant change in Rd. These findings indicate that, under fasting conditions, GLP-1 decreases endogenous glucose production independent of its actions on islet hormone secretion.  相似文献   

15.
To determine whether, in the presence of constant insulin concentrations, a change in glucose concentrations results in a reciprocal change in endogenous glucose production (EGP), glucagon ( approximately 130 ng/l) and insulin ( approximately 65 pmol/l) were maintained at constant "basal" concentrations while glucose was clamped at approximately 5.3 mM (euglycemia), approximately 7.0 mM (sustained hyperglycemia; n = 10), or varied to create a "postprandial" profile (profile; n = 11). EGP fell slowly over the 6 h of the euglycemia study. In contrast, an increase in glucose to 7.13 +/- 0.3 mmol/l resulted in prompt and sustained suppression of EGP to 9.65 +/- 1.21 micromol x kg-1 x min-1. On the profile study day, glucose increased to a peak of 11.2 +/- 0.5 mmol/l, and EGP decreased to a nadir of 6.79 +/- 2.54 micromol x kg-1 x min-1 by 60 min. Thereafter, the fall in glucose was accompanied by a reciprocal rise in EGP to rates that did not differ from those observed on the euglycemic study day (11.31 +/- 2.45 vs. 12.11 +/- 3.21 micromol x kg-1 x min-1). Although the pattern of change of glucose differed markedly on the sustained hyperglycemia and profile study days, by design the area above basal did not. This resulted in equivalent suppression of EGP below basal (-1,952 +/- 204 vs. -1,922 +/- 246 mmol. kg-1. 6 h-1). These data demonstrate that, in the presence of a constant basal insulin concentration, changes in glucose within the physiological range rapidly and reciprocally regulate EGP.  相似文献   

16.
This study examined the effects of preexercise glucose administration, with and without epinephrine infusion, on carbohydrate metabolism in horses during exercise. Six horses completed 60 min of treadmill exercise at 55 +/- 1% maximum O(2) uptake 1) 1 h after oral administration of glucose (2 g/kg; G trial); 2) 1 h after oral glucose and with an intravenous infusion of epinephrine (0.2 micromol. kg(-1). min(-1); GE trial) during exercise, and 3) 1 h after water only (F trial). Glucose administration (G and GE) caused hyperinsulinemia and hyperglycemia ( approximately 8 mM). In GE, plasma epinephrine concentrations were three- to fourfold higher than in the other trials. Compared with F, the glucose rate of appearance was approximately 50% and approximately 33% higher in G and GE, respectively, during exercise. The glucose rate of disappearance was approximately 100% higher in G than in F, but epinephrine infusion completely inhibited the increase in glucose uptake associated with glucose administration. Muscle glycogen utilization was higher in GE [349 +/- 44 mmol/kg dry muscle (dm)] than in F (218 +/- 28 mmol/kg dm) and G (201 +/- 35 mmol/kg dm). We conclude that 1) preexercise glucose augments utilization of plasma glucose in horses during moderate-intensity exercise but does not alter muscle glycogen usage and 2) increased circulating epinephrine inhibits the increase in glucose rate of disappearance associated with preexercise glucose administration and increases reliance on muscle glycogen for energy transduction.  相似文献   

17.
Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, was systemically infused during a hyperinsulinemic euglycemic clamp to investigate its effects in vivo. Rats were infused under anesthesia with saline, 10 or 20 mU.min-1.kg-1 insulin, wortmannin (1 microg.min-1.kg-1)+saline, or wortmannin+insulin (10 mU.min-1.kg-1); wortmannin was present for 1 h before and throughout the 2-h clamp. Femoral blood flow (FBF), glucose infusion rate to maintain euglycemia (GIR), glucose appearance (Ra), glucose disappearance (Rd), capillary recruitment by 1-methylxanthine metabolism (MXD), hindleg glucose uptake (HLGU), liver, muscle, and aorta Akt phosphorylation (P-Akt/Akt), and plasma insulin concentrations were determined. Plasma insulin increased from 410+/-49 to 1,680+/-430 and 5,060+/-230 pM with 10 and 20 mU.min-1.kg-1 insulin, respectively. Insulin (10 and 20 mU.min-1.kg-1) increased FBF, MXD, GIR, Rd, and HLGU as well as liver, muscle, and aorta P-Akt/Akt and decreased Ra (all P<0.05). Wortmannin alone increased plasma insulin to 5,450+/-770 pM and increased Ra, Rd, HLGU, and muscle P-Akt/Akt without effect on blood glucose, FBF, MXD liver, or aorta P-Akt/Akt. Wortmannin blocked FBF, MXD, and liver P-Akt/Akt increases from 10 mU.min-1.kg-1 insulin. Comparison of wortmannin+10 mU.min-1.kg-1 insulin and 20 mU.min-1.kg-1 insulin alone (both at approximately 5,000 pM PI) showed that wortmannin fully blocked the changes in FBF and Ra and partly those of GIR, Ra, Rd, HLGU, and muscle P-AKT/Akt. In summary, wortmannin in vivo increases plasma insulin and fully inhibits insulin-mediated effects in liver and aorta and partially those of muscle, where the latter may result from inhibition of insulin-mediated increases in blood flow and capillary recruitment.  相似文献   

18.
In healthy subjects, basal endogenous glucose production is partly regulated by paracrine intrahepatic factors. It is currently unknown whether paracrine intrahepatic factors also influence the increased basal endogenous glucose production in patients with type 2 diabetes mellitus. Administration of indomethacin to patients with type 2 diabetes mellitus stimulates endogenous glucose production and inhibits insulin secretion. Our aim was to evaluate whether this stimulatory effect on glucose production is solely attributable to inhibition of insulin secretion. In order to do this, we administered indomethacin to 5 patients with type 2 diabetes during continuous infusion of somatostatin to block endogenous insulin and glucagon secretion and infusion of basal concentrations of insulin and glucagon in a placebo-controlled study. Endogenous glucose production was measured 3 hours after the start of the somatostatin, insulin and glucagon infusion, for 4 hours after administration of placebo/indomethacin, by primed, continuous infusion of [6,6-(2)H(2)] glucose. At the time of administration of placebo or indomethacin, there were no significant differences in plasma glucose concentrations and endogenous glucose production rates between the two experiments (16.4 +/- 2.09 mmol/l vs. 16.6 +/- 1.34 mmol/l and 17.7 +/- 1.05 micromol/kg/min and 17.0 +/- 1.06 micromol/kg/min), control vs. indomethacin). Plasma glucose concentration did not change significantly in the four hours after indomethacin or placebo administration. Endogenous glucose production in both experiments was similar after both placebo and indomethacin. Mean plasma C-peptide concentrations were all below the detection limit of the assay, reflecting adequate suppression of endogenous insulin secretion by somatostatin. There were no differences in plasma concentrations of insulin (76 +/- 5 vs. 74 +/- 4 pmol/l) and glucagon (69 +/- 8 vs. 71 +/- 6 ng/l) between the studies with levels remaining unchanged in both experiments. Plasma concentrations of cortisol, epinephrine, and norepinephrine were similar in the two studies and did not change significantly. We conclude that indomethacin stimulates endogenous glucose production in patients with type 2 diabetes mellitus by inhibition of insulin secretion.  相似文献   

19.
Physical training has been shown to improve glucose tolerance and insulin sensitivity. In the present study, insulin action was determined using the euglycemic clamp technique in six untrained nonobese subjects before, during, and after long-term mild regular jogging. After 1 yr of jogging, steady-state plasma insulin levels (I) decreased significantly, and the metabolic clearance rate of insulin was increased by 87%, although insulin infusion rate during the clamp was constant for each individual. The amount of glucose infused (glucose metabolism, M) tended to increase from 6.16 +/- 0.94 to 8.15 +/- 1.94 mg.kg-1.min-1 after regular jogging for 1 yr, although that was not statistically significant. However, M/I increases significantly from 0.060 +/- 0.012 to 0.184 +/- 0.056 (P less than 0.05) after 1 yr. The concentrations of plasma free fatty acids during the hyperinsulinemic clamp decreased more significantly after 1 yr of jogging (P less than 0.05). The concentrations of plasma glycerol decreased gradually before and after long-term regular jogging, showing only a 50-60% reduction in 120 min. Therefore, long-term mild regular jogging, which did not influence either body mass index or maximal O2 uptake, appears to improve insulin action in both carbohydrate and lipid metabolism and to increase the metabolic clearance rate of insulin.  相似文献   

20.
Infusion of glucose into the hepatic artery blocks the stimulatory effect of the "portal signal" on net hepatic glucose uptake (NHGU) during portal glucose delivery. We hypothesized that hepatic artery ligation (HAL) would result in enhanced NHGU during peripheral glucose infusion because the arterial glucose concentration would be perceived as lower than that in the portal vein. Fourteen dogs underwent HAL approximately 16 days before study. Conscious 42-h-fasted dogs received somatostatin, intraportal insulin, and glucagon infusions at fourfold basal and at basal rates, respectively, and peripheral glucose infusion to create hyperglycemia. After 90 min (period 1), seven dogs (HALpo) received intraportal glucose (3.8 mg. kg-1. min-1) and seven (HALpe) continued to receive only peripheral glucose for 90 min (period 2). These two groups were compared with nine non-HAL control dogs (control) treated as were HALpe. During period 2, the arterial plasma insulin concentrations (24 +/- 3, 20 +/- 1, and 24 +/- 2 microU/ml) and hepatic glucose loads (39.1 +/- 2.5, 43.8 +/- 2.9, and 37.7 +/- 3.7 mg. kg-1. min-1) were not different in HALpe, HALpo, and control, respectively. HALpo exhibited greater (P < 0.05) NHGU than HALpe and control (3.1 +/- 0.3, 2.0 +/- 0.4, and 2.0 +/- 0.1 mg. kg-1. min-1, respectively). Net hepatic carbon retention was approximately twofold greater (P < 0.05) in HALpo than in HALpe and control. NHGU and net hepatic glycogen synthesis during peripheral glucose infusion were not enhanced by HAL. Even though there exists an intrahepatic arterial reference site for the portal vein glucose concentration, the failure of HAL to result in enhanced NHGU during peripheral glucose infusion suggests the existence of one or more comparison sites outside the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号