首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaplasma marginale, an ehrlichial pathogen of cattle and wild ruminants, is transmitted biologically by ticks. A developmental cycle of A. marginale occurs in a tick that begins in gut cells followed by infection of salivary glands, which are the site of transmission to cattle. Geographic isolates of A. marginale vary in their ability to be transmitted by ticks. In these experiments we studied transmission of two recent field isolates of A. marginale, an Oklahoma isolate from Wetumka, OK, and a Florida isolate from Okeechobee, FL, by two populations of Dermacentor variabilis males obtained from the same regions. The Florida and Oklahoma tick populations transmitted the Oklahoma isolate, while both tick populations failed to transmit the Florida isolate. Gut and salivary gland infections of A. marginale, as determined by quantitative PCR and microscopy, were detected in ticks exposed to the Oklahoma isolate, while these tissues were not infected in ticks exposed to the Florida isolate. An adhesion-recovery assay was used to study adhesion of the A. marginale major surface protein (MSP) 1a to gut cells from both tick populations and cultured tick cells. We demonstrated that recombinant Escherichia coli expressing Oklahoma MSP1a adhered to cultured and native D. variabilis gut cells, while recombinant E. coli expressing the Florida MSP1a were not adherent to either tick cell population. The MSP1a of the Florida isolate of A. marginale, therefore, was unable to mediate attachment to tick gut cells, thus inhibiting salivary gland infection and transmission to cattle. This is the first report of MSP1a being responsible for effecting infection and transmission of A. marginale by Dermacentor spp. ticks. The mechanism of tick infection and transmission of A. marginale is important in formulating control strategies and development of improved vaccines for anaplasmosis.  相似文献   

2.
The effect of Anaplasma marginale antibodies ingested with the tick blood meal was tested on infected male ticks that were allowed to feed on cattle immunized with the erythrocytic stage of A. marginale. The experiments were done in two trials. Trial 1 was done using splenectomized calves (two calves per treated and control groups) while ticks in trial 2 were fed on intact yearling cattle (four cattle per treated and control groups). The cattle were immunized with purified outer membrane proteins of erythrocyte-derived A. marginale using saponin (trial 1) or monophosphoryl lipid-A-trehalose dicorynomycolate adjuvant (trial 2). The corresponding control cattle received adjuvant only. All cattle were challenged using Dermacentor andersoni males infected as adults that were allowed to feed for 7 days. In trial 1, the ticks were allowed to feed a second time on susceptible calves to test whether exposure of ticks to immunized cattle affected their ability to transmit anaplasmosis. Infections in fed ticks were monitored by determining the infection rates in salivary glands with an A. marginale-specific RNA probe and light microscopy. Vaccine-derived antibodies ingested with the tick blood meal did not appear to affect the development of A. marginale in previously infected ticks. The infection rates in the salivary glands were not significantly different among ticks fed on immunized versus adjuvant control cattle. When the vaccine-exposed ticks in trial 1 were allowed to feed a second time on susceptible calves, the resulting clinical symptoms of anaplasmosis were similar to those of the controls. There was no statistically significant effect of tick exposure to the anti-erythrocytic stage antibody on the development of salivary gland infection or transmission of A. marginale by ticks.  相似文献   

3.
The tick-borne cattle pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae) multiplies within membrane-bound inclusions in host cell cytoplasm. Many geographic isolates of A. marginale occur that vary in genotype, antigenic composition, morphology and infectivity for ticks. A tick cell culture system for propagation of A. marginale proved to be a good model for study of tick-pathogen interactions. Six major surface proteins (MSPs) identified on A. marginale from bovine erythrocytes were conserved on A. marginale derived from tick cells. MSP1a and MSP1b were adhesins for bovine erythrocytes, while only MSP1a was found to be an adhesin for tick cells. The tandemly repeated portion of MSP1a was found to be necessary and sufficient for adhesion to both tick cells and bovine erythrocytes. Infectivity of A. marginale isolates for ticks was dependent on the adhesive capacity of the isolate MSP1a, which was found to involve both the adhesive properties and sequence of the repeated peptides. Cattle immunized with A. marginale derived from bovine erythrocytes or tick cells demonstrated a differential antibody response to MSP1a and MSP1b that resulted from the differential expression of these proteins in cattle and ticks cells. MSP2, derived from a multi-gene family, was found to undergo antigenic variation in cattle and ticks and may contribute to establishment of persistent A. marginale infections. MSP1a has been used as a stable genetic marker for geographic isolates because the molecular weight varies due to differing numbers of the tandem repeats. However, phylogenetic studies of A. marginale isolates from North America using MSP1a and MSP4 demonstrated that MSP4 was a good biogeographic marker, while MSP1a varied greatly among and within geographic areas. Infection and development of A. marginale in cattle and tick cells appears to differ and to be mediated by several surface proteins encoded from the small genome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Rhipicephalus microplus is an obligate hematophagous ectoparasite of cattle and an important biological vector of Anaplasma marginale in tropical and subtropical regions. The primary determinants for A. marginale transmission are infection of the tick gut, followed by infection of salivary glands. Transmission of A. marginale to cattle occurs via infected saliva delivered during tick feeding. Interference in colonization of either the tick gut or salivary glands can affect transmission of A. marginale to naïve animals. In this study, we used the tick embryonic cell line BME26 to identify genes that are modulated in response to A. marginale infection. Suppression-subtractive hybridization libraries (SSH) were constructed, and five up-regulated genes {glutathione S-transferase (GST), cytochrome c oxidase sub III (COXIII), dynein (DYN), synaptobrevin (SYN) and phosphatidylinositol-3,4,5-triphosphate 3-phosphatase (PHOS)} were selected as targets for functional in vivo genomic analysis. RNA interference (RNAi) was used to determine the effect of tick gene knockdown on A. marginale acquisition and transmission. Although RNAi consistently knocked down all individually examined tick genes in infected tick guts and salivary glands, only the group of ticks injected with dsCOXIII failed to transmit A. marginale to naïve calves. To our knowledge, this is the first report demonstrating that RNAi of a tick gene is associated with a failure of A. marginale transmission.  相似文献   

5.
Anaplasma marginale is the causative agent of anaplasmosis in cattle. Transposon mutagenesis of this pathogen using the Himar1 system resulted in the isolation of an omp10 operon insertional mutant referred to as the omp10::himar1 mutant. The work presented here evaluated if this mutant had morphological and/or growth rate defects compared to wild-type A. marginale. Results showed that the morphology, developmental cycle, and growth in tick and mammalian cell cultures are similar for the mutant and the wild type. Tick transmission experiments established that tick infection levels with the mutant were similar to those with wild-type A. marginale and that infected ticks successfully infected cattle. However, this mutant exhibited reduced infectivity and growth in cattle. The possibility of transforming A. marginale by transposon mutagenesis coupled with in vitro and in vivo assessment of altered phenotypes can aid in the identification of genes associated with virulence. The isolation of deliberately attenuated organisms that can be evaluated in their natural biological system is an important advance for the rational design of vaccines against this species.  相似文献   

6.
7.
8.
Anaplasma marginale, an ehrlichial pathogen of cattle and wild ruminants, is transmitted biologically by ticks. A developmental cycle of A. marginale occurs in a tick that begins in gut cells followed by infection of salivary glands, which are the site of transmission to cattle. Geographic isolates of A. marginale vary in their ability to be transmitted by ticks. In these experiments we studied transmission of two recent field isolates of A. marginale, an Oklahoma isolate from Wetumka, OK, and a Florida isolate from Okeechobee, FL, by two populations of Dermacentor variabilis males obtained from the same regions. The Florida and Oklahoma tick populations transmitted the Oklahoma isolate, while both tick populations failed to transmit the Florida isolate. Gut and salivary gland infections of A. marginale, as determined by quantitative PCR and microscopy, were detected in ticks exposed to the Oklahoma isolate, while these tissues were not infected in ticks exposed to the Florida isolate. An adhesion-recovery assay was used to study adhesion of the A. marginale major surface protein (MSP) 1a to gut cells from both tick populations and cultured tick cells. We demonstrated that recombinant Escherichia coli expressing Oklahoma MSP1a adhered to cultured and native D. variabilis gut cells, while recombinant E. coli expressing the Florida MSP1a were not adherent to either tick cell population. The MSP1a of the Florida isolate of A. marginale, therefore, was unable to mediate attachment to tick gut cells, thus inhibiting salivary gland infection and transmission to cattle. This is the first report of MSP1a being responsible for effecting infection and transmission of A. marginale by Dermacentor spp. ticks. The mechanism of tick infection and transmission of A. marginale is important in formulating control strategies and development of improved vaccines for anaplasmosis.  相似文献   

9.

Background  

The tick-borne pathogenAnaplasma marginale, which is endemic worldwide, is the type species of the genusAnaplasma (Rickettsiales: Anaplasmataceae).Rhipicephalus (Boophilus)microplus is the most important tick vector ofA. marginale in tropical and subtropical regions of the world. Despite extensive characterization of the genetic diversity inA. marginale geographic strains using major surface protein sequences, little is known about the biogeography and evolution ofA. marginale and otherAnaplasma species. ForA. marginale, MSP1a was shown to be involved in vector-pathogen and host-pathogen interactions and to have evolved under positive selection pressure. The MSP1a ofA. marginale strains differs in molecular weight because of a variable number of tandem 23-31 amino acid repeats and has proven to be a stable marker of strain identity. While phylogenetic studies of MSP1a repeat sequences have shown evidence ofA. marginale-tick co-evolution, these studies have not provided phylogeographic information on a global scale because of the high level of MSP1a genetic diversity among geographic strains.  相似文献   

10.
11.

Background  

The cattle tick, Rhipicephalus (Boophilus) microplus, economically impact cattle industry in tropical and subtropical regions of the world. The morphological and genetic differences among R. microplus strains have been documented in the literature, suggesting that biogeographical and ecological separation may have resulted in boophilid ticks from America/Africa and those from Australia being different species. To test the hypothesis of the presence of different boophilid species, herein we performed a series of experiments to characterize the reproductive performance of crosses between R. microplus from Australia, Africa and America and the genetic diversity of strains from Australia, Asia, Africa and America.  相似文献   

12.

Inhibitors of apoptosis (IAPs) are regulators of cell death and may play a role in the salivary glands of ticks during blood-feeding. We cloned the open reading frame (ORF) sequence of the IAP gene in Rhipicephalus haemaphysaloides (RhIAP). The RhIAP ORF of 1887 bp encodes a predicted protein of 607 amino acids, which contains three baculovirus IAP repeat domains and a RING finger motif. A real-time PCR assay showed that RhIAP mRNA was expressed in all the tick developmental stages (eggs, larvae, nymphs, and adults) and in all tissues examined (midgut, ovary, salivary glands, fat body, and hemolymph). Western blot showed that the protein level of RhIAP in salivary glands increased during tick blood-feeding and decreased towards the end of tick engorgement. RhIAP gene silencing in vitro experiments with salivary glands demonstrated that RhIAP could be effectively knocked down within 48 h after dsRNA treatment, and as a consequence, salivary glands displayed apoptotic morphology. RhIAP gene silencing also inhibited tick blood-feeding and decreased the engorgement rate. These data suggest that RhIAP might be a suitable RNAi target for tick control.

  相似文献   

13.
14.
Anaplasma species are tick-transmitted pathogens that impact veterinary and human health. Sicily is one of the locations where these pathogens are endemic. Sicily represents a typical Mediterranean ecosystem to study Anaplasma infection and tick habitat suitability. The aims of this study were (i) to characterize by 16S rRNA and species-specific msp4 gene PCR the prevalence and genotypes of A. marginale, A. phagocytophilum, and A. ovis in the most abundant host species in Sicilian provinces and (ii) to correlate differences between hosts and between western and eastern Sicily with the habitat suitability for ticks in these regions. Differences were found in the prevalence of Anaplasma spp. between different hosts and between western and eastern provinces. The differences in Anaplasma prevalence between different hosts may be explained by pathogen host tropism. The differences between western and eastern provinces correlated with the tick habitat suitability in these regions. The analysis of Anaplasma genotypes suggested a higher host and regional specificity for A. phagocytophilum than for A. marginale and A. ovis strains, a finding probably associated with the broader host range of A. phagocytophilum. The presence of identical A. marginale genotypes in the two regions may reflect cattle movement. The results for A. ovis suggested the possibility of some genotypes being host specific. These results provide information potentially useful for the management of tick-borne diseases caused by Anaplasma spp. in Sicily and other Mediterranean regions and may contribute to the development of models to predict the risks for these tick-borne pathogens.  相似文献   

15.

Background

The Arthropods are a diverse group of organisms including Chelicerata (ticks, mites, spiders), Crustacea (crabs, shrimps), and Insecta (flies, mosquitoes, beetles, silkworm). The cattle tick, Rhipicephalus (Boophilus) microplus, is an economically significant ectoparasite of cattle affecting cattle industries world wide. With the availability of sequence reads from the first Chelicerate genome project (the Ixodes scapularis tick) and extensive R. microplus ESTs, we investigated evidence for putative RNAi proteins and studied RNA interference in tick cell cultures and adult female ticks targeting Drosophila homologues with known cell viability phenotype.

Results

We screened 13,643 R. microplus ESTs and I. scapularis genome reads to identify RNAi related proteins in ticks. Our analysis identified 31 RNAi proteins including a putative tick Dicer, RISC associated (Ago-2 and FMRp), RNA dependent RNA polymerase (EGO-1) and 23 homologues implicated in dsRNA uptake and processing. We selected 10 R. microplus ESTs with >80% similarity to D. melanogaster proteins associated with cell viability for RNAi functional screens in both BME26 R. microplus embryonic cells and female ticks in vivo. Only genes associated with proteasomes had an effect on cell viability in vitro. In vivo RNAi showed that 9 genes had significant effects either causing lethality or impairing egg laying.

Conclusion

We have identified key RNAi-related proteins in ticks and along with our loss-of-function studies support a functional RNAi pathway in R. microplus. Our preliminary studies indicate that tick RNAi pathways may differ from that of other Arthropods such as insects.  相似文献   

16.
AdultRhipicephalus appendiculatus ticks were fed as three sequential infestations on both rabbits and cattle. The feedings at first infestation on naive hosts were optimum for the ticks, whereas at third infestation the hosts were resistant, as expressed by reduced tick feeding performance. Ticks from naive and resistant hosts were examined for histological differences of salivary glands. In ticks fed on resistant rabbits there was a large increase in the synthesis of glycoprotein secretory granules in thec 1 cells compared with ticks fed on naive rabbits. In ticks fed on naive and resistant cattle, the activity of thec 1 cells was less than in ticks fed on naive and resistant rabbits. It was concluded that the salivary glands are able to respond selectively to conditions at the feeding site, and that this may be advantageous to the tick.  相似文献   

17.
18.

Background

Progress in generating comprehensive EST libraries and genome sequencing is setting the stage for reverse genetic approaches to gene function studies in the blacklegged tick (Ixodes scapularis). However, proving that RNAi can work in nervous tissue has been problematic. Developing an ability to manipulate gene expression in the tick synganglia likely would accelerate understanding of tick neurobiology. Here, we assess gene silencing by RNA interference in the adult female black-legged tick synganglia.

Results

Tick β-Actin and Na+-K+-ATPase were chosen as targets because both genes express in all tick tissues including synganglia. This allowed us to deliver dsRNA in the unfed adult female ticks and follow a) uptake of dsRNA and b) gene disruption in synganglia. In vitro assays demonstrated total disruption of both tick β-Actin and Na+-K+-ATPase in the synganglia, salivary glands and midguts. When dsRNA was microinjected in unfed adult female ticks, nearly all exhibited target gene disruption in the synganglia once ticks were partially blood fed.

Conclusion

Abdominal injection of dsRNA into unfed adult female ticks appears to silence target gene expression even in the tick synganglia. The ability of dsRNA to cross the blood-brain barrier in ticks suggests that RNAi should prove to be a useful method for dissecting function of synganglia genes expressing specific neuropeptides in order to better assess their role in tick biology.  相似文献   

19.

Background

The majority of vector-borne infections occur in the tropics, including Africa, but molecular eco-epidemiological studies are seldom reported from these regions. In particular, most previously published data on ticks in Ethiopia focus on species distribution, and only a few molecular studies on the occurrence of tick-borne pathogens or on ecological factors influencing these. The present study was undertaken to evaluate, if ticks collected from cattle in different Ethiopian biotopes harbour (had access to) different pathogens.

Methods

In South-Western Ethiopia 1032 hard ticks were removed from cattle grazing in three kinds of tick biotopes. DNA was individually extracted from one specimen of both sexes of each tick species per cattle. These samples were molecularly analysed for the presence of tick-borne pathogens.

Results

Amblyomma variegatum was significantly more abundant on mid highland, than on moist highland. Rhipicephalus decoloratus was absent from savannah lowland, where virtually only A. cohaerens was found. In the ticks Coxiella burnetii had the highest prevalence on savannah lowland. PCR positivity to Theileria spp. did not appear to depend on the biotope, but some genotypes were unique to certain tick species. Significantly more A. variegatum specimens were rickettsia-positive, than those of other tick species. The presence of rickettsiae (R. africae) appeared to be associated with mid highland in case of A. variegatum and A. cohaerens. The low level of haemoplasma positivity seemed to be equally distributed among the tick species, but was restricted to one biotope type.

Conclusions

The tick biotope, in which cattle are grazed, will influence not only the tick burden of these hosts, but also the spectrum of pathogens in their ticks. Thus, the presence of pathogens with alternative (non-tick-borne) transmission routes, with transstadial or with transovarial transmission by ticks appeared to be associated with the biotope type, with the tick species, or both, respectively.  相似文献   

20.
The aim of the present study was to determine the identity, seasonal activity and distribution of tick species of cattle in the West Aegean region of Turkey between June 2006 and May 2008. Nine villages within three provinces, viz. Manisa, Izmir and Aydin, were included in the study and a total of 75 animal barns were visited monthly for a period of 24 months and 443 cattle were examined for the presence of ticks. It was determined that 23% of cattle were infested with ticks. A total of 19,679 adult ticks were collected. The most abundant tick species was Hyalomma marginatum (33.5%) and H. excavatum (16.9%) in the study area. Seasonal appearance of the adult ticks varied among species. Adult ticks of the Hyalomma genus were present throughout the year, although in smaller numbers during the winter. Species of Rhipicephalus were detected in all seasons except autumn. Rhipicephalus (Boophilus) annulatus was identified in July and August, Haemaphysalis parva was detected during the autumn. Ixodes ricinus and Dermacentor marginatus were identified during spring, autumn and winter. The study demonstrated the presence of I. ricinus, D. marginatus, Hyalomma rufipes and Hae. parva for the first time in the West Aegean region of Turkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号