首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

Background

The generation of thrombin is a critical process in the formation of venous thrombi. In isolated plasma under static conditions, phosphatidylserine (PS)-exposing platelets support coagulation factor activation and thrombin generation; however, their role in supporting coagulation factor binding under shear conditions remains unclear. We sought to determine where activated factor X (FXa), (pro)thrombin, and fibrin(ogen) are localized in thrombi formed under venous shear.

Methodology/Principal Findings

Fluorescence microscopy was used to study the accumulation of platelets, FXa, (pro)thrombin, and fibrin(ogen) in thrombi formed in vitro and in vivo. Co-perfusion of human blood with tissue factor resulted in formation of visible fibrin at low, but not at high shear rate. At low shear, platelets demonstrated increased Ca2+ signaling and PS exposure, and supported binding of FXa and prothrombin. However, once cleaved, (pro)thrombin was observed on fibrin fibers, covering the whole thrombus. In vivo, wild-type mice were injected with fluorescently labeled coagulation factors and venous thrombus formation was monitored in mesenteric veins treated with FeCl3. Thrombi formed in vivo consisted of platelet aggregates, focal spots of platelets binding FXa, and large areas binding (pro)thrombin and fibrin(ogen).

Conclusions/Significance

FXa bound in a punctate manner to thrombi under shear, while thrombin and fibrin(ogen) distributed ubiquitously over platelet-fibrin thrombi. During thrombus formation under venous shear, thrombin may relocate from focal sites of formation (on FXa-binding platelets) to dispersed sites of action (on fibrin fibers).  相似文献   

2.
3.

Introduction

Thrombin is a key factor in the stimulation of fibrin deposition, angiogenesis, and proinflammatory processes. Abnormalities in these processes are primary features of osteoarthritis (OA). Heme oxygenase (HO)-1 is a stress-inducible rate-limiting enzyme in heme degradation that confers cytoprotection against oxidative injury. Here, we investigated the intracellular signaling pathways involved in thrombin-induced HO-1 expression in human synovial fibroblasts (SFs).

Methods

Thrombin-mediated HO-1 expression was assessed with quantitative real-time (q)PCR. The mechanisms of action of thrombin in different signaling pathways were studied by using Western blotting. Knockdown of protease-activated receptor (PAR) proteins was achieved by transfection with siRNA. Chromatin immunoprecipitation assays were used to study in vivo binding of Nrf2 to the HO-1 promoter. Transient transfection was used to examine HO-1 activity.

Results

Osteoarthritis synovial fibroblasts (OASFs) showed significant expression of thrombin, and expression was higher than in normal SFs. OASFs stimulation with thrombin induced concentration- and time-dependent increases in HO-1 expression. Pharmacologic inhibitors or activators and genetic inhibition by siRNA of protease-activated receptors (PARs) revealed that the PAR1 and PAR3 receptors, but not the PAR4 receptor, are involved in thrombin-mediated upregulation of HO-1. Thrombin-mediated HO-1 expression was attenuated by thrombin inhibitor (PPACK), PKCδ inhibitor (rottlerin), or c-Src inhibitor (PP2). Stimulation of cells with thrombin increased PKCδ, c-Src, and Nrf2 activation.

Conclusion

Our results suggest that the interaction between thrombin and PAR1/PAR3 increases HO-1 expression in human synovial fibroblasts through the PKCδ, c-Src, and Nrf2 signaling pathways.  相似文献   

4.

Background

Crescentic glomerulonephritis (CresGN), an uncommon rapidly progressive disease, is characterized by severe glomerular inflammation with fibrin deposition. The lack of specific CresGN biomarkers delays diagnosis and threatens life. Because fibrin deposits in CresGN glomeruli indicate thrombin generation, we hypothesized that thrombin is excreted in urine and is a specific CresGN biomarker.

Methods

We measured urinary thrombin activity in 200 untreated patients (17 with CresGN, 183 with primary glomerulonephritis) and controls (8 patients with healed CresGN, 11 with nephrosclerosis, and 10 with tubulointerstitial nephritis, and 66 healthy volunteers). CresGN types included 15 pauci-immune and 2 immune complex. We assessed the diagnostic accuracy of thrombinuria in 169 patients with hematuria and proteinuria. Renal biopsy tissues were immunostained for tissue factor and fibrin. We analyzed the relationship of thrombinuria to plasma thrombin-antithrombin complex, hematuria, proteinuria, glomerular filtration rate, glomerular fibrin deposition, antineutrophil cytoplasmic antibodies (ANCAs), and C-reactive protein (CRP). We studied changes in thrombin activities after glucocorticoid treatment in 12 patients with thrombinuria.

Results

The highest thrombinuria occurrence was in CresGN (70.6%), followed by membranoproliferative glomerulonephritis (41.7%), IgA nephropathy (9.2%), and acute glomerulonephritis (0%). More than 75% of patients with nonproliferative glomerulonephritis manifested no thrombinuria. No controls had thrombinuria. Thrombinuria showed high CresGN specificity (90.1%) and moderate sensitivity (70.6%) and was detected in 4 of 7 patients with ANCA-negative CresGN. In CresGN, thrombinuria was associated with fibrin deposition in glomerular extracapillary tissue, where monocytes/macrophages expressed tissue factor. Thrombinuria in CresGN was unrelated to plasma thrombin-antithrombin complex, hematuria, proteinuria, glomerular filtration rate, and CRP. After glucocorticoid treatment, thrombinuria in patients with CresGN rapidly disappeared but proteinuria and hematuria persisted.

Conclusions

Thrombinuria was specific for glomerular inflammation, was unaffected by systemic inflammation or coagulation, and demonstrated good diagnostic accuracy for CresGN including ANCA-negative cases. Thrombinuria measurement may provide risk-free diagnosis and screening for CresGN.  相似文献   

5.

Background and hypothesis

Hypercholesterolemia leads to a prothrombotic phenotype. Platelet hyperactivity associated with hypercholesterolemia has been attributed, in part, to oxidative stress. P66Shc is a well-known determinant of cellular and organismal oxidative stress. However, its role in platelet biology is not known. We hypothesized that p66Shc mediates platelet hyperactivation and hyperaggregation in hypercholesterolemia.

Methods and results

P66Shc was expressed in both human and mouse platelets, as determined by qRT-PCR and immunoblotting. Mouse platelet p66Shc expression was upregulated by hypercholesterolemia induced by high-fat diet feeding. Compared to wild-type mice, high-fat diet-induced p66Shc expression in platelets was suppressed in transgenic mice expressing a short hairpin RNA targeting p66Shc (p66ShcRNAi). High-fat diet feeding of wild-type mice amplified surface P-selectin expression on platelets stimulated by the thrombin receptor agonist protease-activated receptor-4 (PAR4), and increased aggregation of platelets induced by thrombin. These exaggerated platelet responses induced by high-fat diet feeding were significantly blunted in p66ShcRNAi mice. Finally, thrombin-stimulated platelet reactive oxygen species were suppressed in p66ShcRNAi mice.

Conclusions

Hypercholesterolemia stimulates p66Shc expression in platelets, promoting platelet oxidative stress, hyperreactivity and hyperaggregation via p66Shc.  相似文献   

6.
7.
8.
《Biophysical journal》2023,122(4):697-712
During clotting under flow, thrombin rapidly generates fibrin, whereas fibrin potently sequesters thrombin. This co-regulation was studied using microfluidic whole blood clotting on collagen/tissue factor, followed by buffer wash, and a start/stop cycling flow assay using the thrombin fluorogenic substrate, Boc-Val-Pro-Arg-AMC. After 3 min of clotting (100 s?1) and 5 min of buffer wash, non-elutable thrombin activity was easily detected during cycles of flow cessation. Non-elutable thrombin was similarly detected in plasma clots or arterial whole blood clots (1000 s?1). This thrombin activity was ablated by Phe-Pro-Arg-chloromethylketone (PPACK), apixaban, or Gly-Pro-Arg-Pro to inhibit fibrin. Reaction-diffusion simulations predicted 108 nM thrombin within the clot. Heparin addition to the start/stop assay had little effect on fibrin-bound thrombin, whereas addition of heparin-antithrombin (AT) required over 6 min to inhibit the thrombin, indicating a substantial diffusion limitation. In contrast, heparin-AT rapidly inhibited thrombin within microfluidic plasma clots, indicating marked differences in fibrin structure and functionality between plasma clots and whole blood clots. Addition of GPVI-Fab to blood before venous or arterial clotting (200 or 1000 s?1) markedly reduced fibrin-bound thrombin, whereas GPVI-Fab addition after 90 s of clotting had no effect. Perfusion of AF647-fibrinogen over washed fluorescein isothiocyanate (FITC)-fibrin clots resulted in an intense red layer around, but not within, the original FITC-fibrin. Similarly, introduction of plasma/AF647-fibrinogen generated substantial red fibrin masses that did not penetrate the original green clots, demonstrating that fibrin cannot be re-clotted with fibrinogen. Overall, thrombin within fibrin is non-elutable, easily accessed by peptides, slowly accessed by average-sized proteins (heparin/AT), and not accessible to fresh fibrinogen.  相似文献   

9.

Background

Fibrin formation and dissolution are attributed to cascades of protease activation concluding with thrombin activation, and plasmin proteolysis for fibrin breakdown. Cysteine cathepsins are powerful proteases secreted by endothelial cells and others during cardiovascular disease and diabetes. Their fibrinolytic activity and putative role in hemostasis has not been well described.

Methods

Fibrin gels were polymerized and incubated with recombinant human cathepsins (cat) K, L, or S, or plasmin, for dose-dependent and time-dependent studies. Dissolution of fibrin gels was imaged. SDS-PAGE was used to resolve cleaved fragments released from fibrin gels and remnant insoluble fibrin gel that was solubilized prior to electrophoresis to assess fibrin α, β, and γ polypeptide hydrolysis by cathepsins. Multiplex cathepsin zymography determined active amounts of cathepsins remaining.

Results

There was significant loss of α and β fibrin polypeptides after incubation with cathepsins, with catS completely dissolving fibrin gel by 24?h. Binding to fibrin stabilized catL active time; it associated with cleaved fibrin fragments of multiple sizes. This was not observed for catK or S. CatS also remained active for longer times during fibrin incubation, but its association/binding did not withstand SDS-PAGE preparation.

Conclusions

Human cathepsins K, L, and S are fibrinolytic, and specifically can degrade the α and β fibrin polypeptide chains, generating fragments unique from plasmin.

General significance

Demonstration of cathepsins K, L, and S fibrinolytic activity leads to further investigation of contributory roles in disrupting vascular hemostasis, or breakdown of fibrin-based engineered vascular constructs where non-plasmin mediated fibrinolysis must be considered.  相似文献   

10.
11.

Background

Altered fibrin clot architecture is increasingly associated with cardiovascular diseases; yet, little is known about how fibrin networks are affected by small molecules that alter fibrinogen structure. Based on previous evidence that S-nitrosoglutathione (GSNO) alters fibrinogen secondary structure and fibrin polymerization kinetics, we hypothesized that GSNO would alter fibrin microstructure.

Methodology/Principal Findings

Accordingly, we treated human platelet-poor plasma with GSNO (0.01–3.75 mM) and imaged thrombin induced fibrin networks using multiphoton microscopy. Using custom designed computer software, we analyzed fibrin microstructure for changes in structural features including fiber density, diameter, branch point density, crossing fibers and void area. We report for the first time that GSNO dose-dependently decreased fibrin density until complete network inhibition was achieved. At low dose GSNO, fiber diameter increased 25%, maintaining clot void volume at approximately 70%. However, at high dose GSNO, abnormal irregularly shaped fibrin clusters with high fluorescence intensity cores were detected and clot void volume increased dramatically. Notwithstanding fibrin clusters, the clot remained stable, as fiber branching was insensitive to GSNO and there was no evidence of fiber motion within the network. Moreover, at the highest GSNO dose tested, we observed for the first time, that GSNO induced formation of fibrin agglomerates.

Conclusions/Significance

Taken together, low dose GSNO modulated fibrin microstructure generating coarse fibrin networks with thicker fibers; however, higher doses of GSNO induced abnormal fibrin structures and fibrin agglomerates. Since GSNO maintained clot void volume, while altering fiber diameter it suggests that GSNO may modulate the remodeling or inhibition of fibrin networks over an optimal concentration range.  相似文献   

12.
13.

Objective

Thrombin, the final coagulation product of the coagulation cascade, has been demonstrated to have many physiological effects, including pro-fibrotic actions via protease-activated receptor (PAR)-1. Recent investigations have demonstrated that activation of the cardiac local coagulation system was associated with atrial fibrillation. However, the distribution of thrombin in the heart, especially difference between the atria and the ventricle, remains to be clarified. We herein investigated the expression of thrombin and other related proteins, as well as tissue fibrosis, in the human left atria and left ventricle.

Methods

We examined the expression of thrombin and other related molecules in the autopsied hearts of patients with and without atrial fibrillation. An immunohistochemical analysis was performed in the left atria and the left ventricle.

Results

The thrombin was immunohistologically detected in both the left atria and the left ventricles. Other than in the myocardium, the expression of thrombin was observed in the endocardium and the subendocardium of the left atrium. Thrombin was more highly expressed in the left atrium compared to the left ventricle, which was concomitant with more tissue fibrosis and inflammation, as detected by CD68 expression, in the left atrium. We also confirmed the expression of prothrombin in the left atrium. The expression of PAR-1 was observed in the endocardium, subendocardium and myocardium in the left atrium. In patients with atrial fibrillation, strong thrombin expression was observed in the left atrium.

Conclusions

The strong expression levels of thrombin, prothrombin and PAR-1 were demonstrated in the atrial tissues of human autopsied hearts.  相似文献   

14.
15.
16.
We studied dynamics of cell surface expression ofproteolytically activated thrombin receptor (PAR-1) in human pulmonaryartery endothelial cells (HPAEC). PAR-1 activation was measured bychanges in cytosolic calcium concentration([Ca2+]i)and HPAEC retraction response (determined by real-time transendothelial monolayer electrical resistance).[Ca2+]iincrease in response to thrombin was abolished by preexposure to 25 nMthrombin for >60 min, indicating PAR-1 desensitization, butpreexposure to 25 nM thrombin for only 30 min or to 10 nM thrombin forup to 2 h did not desensitize PAR-1. Exposure to 10 or 25 nM thrombindecreased monolayer electrical resistance 40-60%. Cellspreexposed to 10 nM thrombin, but not those preexposed to 25 nMthrombin, remained responsive to thrombin 3 h later. Loss of cellretractility was coupled to decreased cell surface PAR-1 expression asdetermined by immunofluorescence. Cell surface PAR-1 disappeared uponshort-term (30 min) thrombin exposure but reappeared within 90 minafter incubation in thrombin-free medium. Exposure to 25 nM thrombinfor >60 min prevented rapid cycloheximide-insensitive PAR-1reappearance. Cycloheximide-sensitive recovery of cell surface PAR-1expression required 18 h. Therefore, both duration and concentration ofthrombin exposure regulate the time course of recovery of HPAEC surfacePAR-1 expression. The results support the hypothesis that initialrecovery of PAR-1 surface expression in endothelial cells results froma rapidly mobilizable PAR-1 pool, whereas delayed recovery results fromde novo PAR-1 synthesis. We conclude that thrombin itself regulatesendothelial cell surface PAR-1 expression and that decreased surfaceexpression interferes with thrombin-induced endothelial cell activation responses.

  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号