首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We compared the reproductive system of Rubus alceifolius in its native range in Southeast Asia, in Madagascar, where the plant was introduced apparently some centuries ago, and in La Réunion, an Indian Ocean island onto which R. alceifolius was introduced (from Madagascan source populations) around 1850. While tetraploidy makes it impossible to analyze variation in R. alceifolius using classical methods of population genetics, both the patterns of genetic diversity (as revealed by AFLP [amplified fragment length polymorphism] markers) and differences between half-sib progeny and their maternal parents (revealed by microsatellite markers) show that in the plant's native range in southeast Asia, seeds are produced sexually. In contrast, in Madagascar sexual reproduction cannot alone account for the genetic patterns observed with microsatellite markers. Over 85% of the half-sib progeny resulting from open pollination gave multilocus genotypes identical to those of their respective maternal parents, despite the fact that the latter had alleles that were rare in the population. The other progeny differed in having an allele with one motif more or less than that of the maternal parent. Seeds thus appear to be produced mostly or exclusively by apomixis in Madagascar. We present findings suggesting that Madagascan populations result from hybridization of introduced R. alceifolius and native populations of R. roridus, a closely related species of Rubus subgenus Malachobatus, and suggest that apomixis was a consequence of this hybridization. In Reunionese populations of R. alceifolius (derived from Madagascan populations), seeds obtained in controlled pollination experiments were all genetically identical to maternal parents. While genetic variation (microsatellite markers) in Reunionese populations was low, it was sufficient to allow us to demonstrate that seeds could not have resulted from fertilization by the pollen donors chosen for controlled pollinations, or from autogamy, and were produced exclusively by apomixis.  相似文献   

2.
The origin of the terrestrial biota of Madagascar and, especially, the smaller island chains of the western Indian Ocean is relatively poorly understood. Madagascar represents a mixture of Gondwanan vicariant lineages and more recent colonizers arriving via Cenozoic dispersal, mostly from Africa. Dispersal must explain the biota of the smaller islands such as the Comoros and the chain of Mascarene islands, but relatively few studies have pinpointed the source of colonizers, which may include mainland Africa, Asia, Australasia, and Madagascar. The pantropical hermit spiders (genus Nephilengys) seem to have colonized the Indian Ocean island arc stretching from Comoros through Madagascar and onto Mascarenes, and thus offer one opportunity to reveal biogeographical patterns in the Indian Ocean. We test alternative hypotheses on the colonization route of Nephilengys spiders in the Indian Ocean and simultaneously test the current taxonomical hypothesis using genetic and morphological data. We used mitochondrial (COI) and nuclear (ITS2) markers to examine Nephilengys phylogenetic structure with samples from Africa, southeast Asia, and the Indian Ocean islands of Madagascar, Mayotte, Réunion and Mauritius. We used Bayesian and parsimony methods to reconstruct phylogenies and haplotype networks, and calculated genetic distances and fixation indices. Our results suggest an African origin of Madagascar Nephilengys via Cenozoic dispersal, and subsequent colonization of the Mascarene islands from Madagascar. We find strong evidence of gene flow across Madagascar and through the neighboring islands north of it, while phylogenetic trees, haplotype networks, and fixation indices all reveal genetically isolated and divergent lineages on Mauritius and Réunion, consistent with female color morphs. These results, and the discovery of the first males from Réunion and Mauritius, in turn falsify the existing taxonomic hypothesis of a single widespread species, Nephilengys borbonica, throughout the archipelago. Instead, we diagnose three Nephilengys species: Nephilengys livida (Vinson, 1863) from Madagascar and Comoros, N. borbonica (Vinson, 1863) from Réunion, and Nephilengys dodo new species from Mauritius. Nephilengys followed a colonization route to Madagascar from Africa, and on through to the Mascarenes, where it speciated on isolated islands. The related golden orb-weaving spiders, genus Nephila, have followed the same colonization route, but Nephila shows shallower divergencies, implying recent colonization, or a moderate level of gene flow across the archipelago preventing speciation. Unlike their synanthropic congeners, N. borbonica and N. dodo are confined to pristine island forests and their discovery calls for evaluation of their conservation status.  相似文献   

3.
Aim Cryptoblepharus is a genus of small arboreal or rock‐dwelling scincid lizards, widespread through the Indo‐Pacific and Australian regions, with a disjunct outlier in the Malagasy region. The taxonomy within this genus is controversial, with different authors ranking the different forms (now some 36) at various levels, from different species to subspecies of a single species, Cryptoblepharus boutonii. We investigated the biogeography and genetic differentiation of the Cryptoblepharus from the Western Indian Ocean region, in order to understand their origin and history. Location Western Indian Ocean region. Methods We analysed sequences of mitochondrial DNA (partial 12s and 16s rRNA genes, 766 bp) from 48 specimens collected in Madagascar, Mauritius, the four Comoros islands and East Africa, and also in New Caledonia, representing the Australo‐Pacific unit of the distribution. Results Pairwise sequence divergences of c. 3.1% were found between the New Caledonian forms and the ones from the Western Indian Ocean. Two clades were identified in Madagascar, probably corresponding to the recognized forms cognatus and voeltzkowi, and two clades were identified in the Comoro islands, where each island population formed a distinct haplotype clade. The East African samples form a monophyletic unit, with some variation existing between Pemba, Zanzibar and continental Tanzania populations. Individuals from Mauritius form a divergent group, more related to populations from Moheli and Grand Comore (Comoros islands) than to the others. Main conclusions The level of divergence between the populations from the Western Indian Ocean and Australian regions and the geographic coherence of the variation within the Western Indian Ocean group are concordant with the hypothesis of a colonization of this region by a natural transoceanic dispersal (from Australia or Indonesia). The group then may have diversified in Madagascar, from where it separately colonized the East African coast, the Comoros islands (twice), and Mauritius. The genetic divergence found is congruent with the known morphological variation, but its degree is much lower than typically seen between distinct species of reptiles.  相似文献   

4.
Asexual reproduction in the fissiparous holothurian species Stichopus chloronotus from eight populations between Madagascar and the Great Barrier Reef (total N=149) was investigated using Amplified fragment length polymorphism (AFLP) markers; and results compared to previous allozyme studies. Specifically, we tested the hypotheses that (1) genetic diversity in this species is reduced in the West Indian Ocean and that (2) some populations rely nearly exclusively on asexual reproduction. Using 21 polymorphic markers (obtained by two primer combinations) resulted in 51 genotypes in the whole sample, with up to 20 individuals (nearly all within populations) having the same genotype. These repeated genotypes most likely represent clones. In most populations, more than 50% of individuals were inferred to result from asexual reproduction. In two extreme populations, both of which are comprised nearly entirely of male individuals (Great Palm Island, Trou deau), only up to 20% of all individuals were sexually produced. Although, the genetic diversity in two populations of La Réunion was reduced, the fact that diversity is high in a third population and on Madagascar showed that low genetic diversity in S. chloronotus is not a general feature of the West Indian Ocean. Cluster analysis using Rogers genetic distance did not result in distinct geographic clusters. This supports previous suggestions that although asexual reproduction is important for the maintenance of populations, large distance dispersal of sexually produced larvae provides the genetic link between populations.  相似文献   

5.
 A change in ploidy level could increase invasiveness of introduced plants in insular plant communities. To examine this question for R. alceifolius, we compared its ploidy level in its Asian native range and in the Indian Ocean islands where it has been introduced. We first counted chromosomes on root tips from a Vietnamese individual, which proved to be tetraploid (2n=4x=28). The nuclear DNA content of other individuals from the native range and areas of introduction was estimated using the flow cytometry method. The Vietnamese individual on which chromosomes were counted was added to the sample, to enable deduction of the ploidy level of all individuals from their nuclear DNA content. All individuals were found to be tetraploid, except 10 individuals from a single clone collected in a Vietnamese population, estimated to be triploid, and morphologically different of other individuals of this study. We showed that while polyploidy of the source population may have predisposed this plant to become a successful invader, its introduction into Indian Ocean islands was not associated with any change in ploidy level. Received January 23, 2001 Accepted May 22, 2001  相似文献   

6.
The Giant African Land Snail, Achatina ( = Lissachatina) fulica Bowdich, 1822, is a tropical crop pest species with a widespread distribution across East Africa, the Indian subcontinent, Southeast Asia, the Pacific, the Caribbean, and North and South America. Its current distribution is attributed primarily to the introduction of the snail to new areas by Man within the last 200 years. This study determined the extent of genetic diversity in global A. fulica populations using the mitochondrial 16S ribosomal RNA gene. A total of 560 individuals were evaluated from 39 global populations obtained from 26 territories. Results reveal 18 distinct A. fulica haplotypes; 14 are found in East Africa and the Indian Ocean islands, but only two haplotypes from the Indian Ocean islands emerged from this region, the C haplotype, now distributed across the tropics, and the D haplotype in Ecuador and Bolivia. Haplotype E from the Philippines, F from New Caledonia and Barbados, O from India and Q from Ecuador are variants of the emergent C haplotype. For the non-native populations, the lack of genetic variation points to founder effects due to the lack of multiple introductions from the native range. Our current data could only point with certainty to the Indian Ocean islands as the earliest known common source of A. fulica across the globe, which necessitates further sampling in East Africa to determine the source populations of the emergent haplotypes.  相似文献   

7.
In this paper we examine the evolutionary relationships of kestrels from mainland Africa, Indian Ocean islands and related areas. We construct a molecular phylogeny of African kestrels, using approximately 1.0 kb of mitochondrial cytochrome b sequence. Our molecular results support an Old World origin for typical kestrels and an ancient divergence of kestrels into the New World, and indicate a more recent radiation of kestrels from Africa via Madagascar towards Mauritius and the Seychelles. Phylogenetic placement of the Australian kestrel suggests a recent origin from African kestrel stock. We compare evolutionary relationships based on kestrel plumage pattern and morphology to our molecular results for the African and Indian Ocean kestrels, and reveal some consistency with the different island forms. We apply a range of published avian cytochrome b substitution rates to our data, as an alternative to internal calibration of a molecular clock arising from incomplete paleontological information. We align these divergence estimates to the geological history of Indian Ocean island formation inferred from potassium-argon dating methods. The arrival of kestrels on Mauritius appears consistent with the cessation of volcanic activity on Mauritius. The estimated time and route of divergence of the Seychelles kestrel from Madagascar may be compatible with the emergence of smaller islands during Pleistocene sea level fluctuations.  相似文献   

8.
Aim To describe the phylogeographic patterns of the black rat, Rattus rattus, from islands in the western Indian Ocean where the species has been introduced (Madagascar and the neighbouring islands of Réunion, Mayotte and Grande Comore), in comparison with the postulated source area (India). Location Western Indian Ocean: India, Arabian Peninsula, East Africa and the islands of Madagascar, Réunion, Grande Comore and Mayotte. Methods Mitochondrial DNA (cytochrome b, tRNA and D‐loop, 1762 bp) was sequenced for 71 individuals from 11 countries in the western Indian Ocean. A partial D‐loop (419 bp) was also sequenced for eight populations from Madagascar (97 individuals), which were analysed in addition to six previously published populations from southern Madagascar. Results Haplotypes from India and the Arabian Peninsula occupied a basal position in the phylogenetic tree, whereas those from islands were distributed in different monophyletic clusters: Madagascar grouped with Mayotte, while Réunion and Grand Comore were present in two other separate groups. The only exception was one individual from Madagascar (out of 190) carrying a haplotype that clustered with those from Réunion and South Africa. ‘Isolation with migration’ simulations favoured a model with no recurrent migration between Oman and Madagascar. Mismatch distribution analyses dated the expansion of Malagasy populations on a time‐scale compatible with human colonization history. Higher haplotype diversity and older expansion times were found on the east coast of Madagascar compared with the central highlands. Main conclusions Phylogeographic patterns supported the hypothesis of human‐mediated colonization of R. rattus from source populations in either the native area (India) or anciently colonized regions (the Arabian Peninsula) to islands of the western Indian Ocean. Despite their proximity, each island has a distinct colonization history. Independent colonization events may have occurred simultaneously in Madagascar and Grande Comore, whereas Mayotte would have been colonized from Madagascar. Réunion was colonized independently, presumably from Europe. Malagasy populations may have originated from a single successful colonization event, followed by rapid expansion, first in coastal zones and then in the central highlands. The congruence of the observed phylogeographic pattern with human colonization events and pathways supports the potential relevance of the black rat in tracing human history.  相似文献   

9.
The whitefly Bemisia tabaci is a pest vector of begomoviruses on crops worldwide. Bemisia tabaci is composed of a complex of cryptic species which barely interbreed. An exception is the Ms from the South West Indian Ocean (SWIO), which crosses in low proportions with the exotic B. The Ms, together with B and Q is part of the same phylogenetic clad. To infer the genetic structure, the geographical range and putative origin of this putative species, microsatellite data and mitochondrial DNA (cytochrome oxydase I) sequences were analysed on an extensive sample set, including all the islands of the region and samples from mainland Africa. Only B and Ms populations were detected across these islands. The exotic B was found only on the islands of Réunion and Mauritius, whereas the Ms is found on all the SWIO islands. Very high isolation by distance was found for the Ms populations between islands of the SWIO, suggesting a long period of presence in this region. Ms populations from mainland Africa had a higher COI diversity than the Ms of the SWIO islands. This diversity is correlated with size and geological ages of the SWIO islands. The population genetic data obtained are in accordance with an origin of Ms in Africa, followed by its expansion and evolution across the SWIO islands prior to human arrival, confirming the status of Ms as indigenous in the SWIO islands.  相似文献   

10.

Background and Aims

The coffee genus (Coffea) comprises 124 species, and is indigenous to the Old World Tropics. Due to its immense economic importance, Coffea has been the focus of numerous genetic diversity studies, but despite this effort it remains insufficiently studied. In this study the genetic diversity and genetic structure of Coffea across Africa and the Indian Ocean islands is investigated.

Methods

Genetic data were produced using 13 polymorphic nuclear microsatellite markers (simple sequence repeats, SSRs), including seven expressed sequence tag-SSRs, and the data were analysed using model- and non-model-based methods. The study includes a total of 728 individuals from 60 species.

Key Results

Across Africa and the Indian Ocean islands Coffea comprises a closely related group of species with an overall pattern of genotypes running from west to east. Genetic structure was identified in accordance with pre-determined geographical regions and phylogenetic groups. There is a good relationship between morpho-taxonomic species delimitations and genetic units. Genetic diversity in African and Indian Ocean Coffea is high in terms of number of alleles detected, and Madagascar appears to represent a place of significant diversification in terms of allelic richness and species diversity.

Conclusions

Cross-species SSR transferability in African and Indian Ocean islands Coffea was very efficient. On the basis of the number of private alleles, diversification in East Africa and the Indian Ocean islands appears to be more recent than in West and West-Central Africa, although this general trend is complicated in Africa by the position of species belonging to lineages connecting the main geographical regions. The general pattern of phylogeography is not in agreement with an overall east to west (Mascarene, Madagascar, East Africa, West Africa) increase in genome size, the high proportion of shared alleles between the four regions or the high numbers of exclusive shared alleles between pairs or triplets of regions.  相似文献   

11.
Clidemia hirta is one of the most common woody invasive plants in mesic to wet forests in Hawaii, where it was introduced around 1940. The species is relatively uncommon by comparison in its native range of Central and South America and some Caribbean Islands. We examined genetic variation in allozymes of 20 C. hirta populations on four Hawaiian Islands to determine the introduction history. For comparison, we measured genetic variation in 20 native populations across Costa Rica. Mean levels of genetic variation in Hawaiian and Costa Rican populations were low compared to other woody or introduced plants (11.5-12.5% polymorphic loci, 2.05-2.50 alleles per polymorphic locus, and 0.045-0.063 expected heterozygosity). Most genetic diversity was held within rather than among populations in both areas (G(ST) = 0.120 and 0.271 in Hawaii and Costa Rica, respectively). Hawaiian populations had a high degree of genetic similarity, and no genetic differentiation was found among the four Hawaiian Islands sampled. These patterns of genetic variation in Hawaii suggest that no intraspecific hybridization of genotypes from different parts of the native range has occurred and that introductions to the different islands came from the same or similar source populations. The low levels of genetic diversity in parts of both the native and introduced ranges suggest that genetic variation is unrelated to invasiveness in C. hirta.  相似文献   

12.
We constructed a phylogenetic hypothesis for western Indian Ocean sunbirds (Nectarinia) and used this to investigate the geographic pattern of their diversification among the islands of the Indian Ocean. A total of 1309 bp of mitochondrial sequence data was collected from the island sunbird taxa of the western Indian Ocean region, combined with sequence data from a selection of continental (African and Asian) sunbirds. Topological and branch length information combined with estimated divergence times are used to present hypotheses for the direction and sequence of colonization events in relation to the geological history of the Indian Ocean region. Indian Ocean sunbirds fall into two well-supported clades, consistent with two independent colonizations from Africa within the last 3.9 million years. The first clade contains island populations representing the species Nectarinia notata, while the second includes Nectarinia souimanga, Nectarinia humbloti, Nectarinia dussumieri, and Nectarinia coquereli. With respect to the latter clade, application of Bremer's [Syst. Biol. 41 (1992) 436] ancestral areas method permits us to posit the Comoros archipelago as the point of initial colonization in the Indian Ocean. The subsequent expansion of the souimanga clade across its Indian Ocean range occurred rapidly, with descendants of this early expansion remaining on the Comoros and granitic Seychelles. The data suggest that a more recent expansion from Anjouan in the Comoros group led to the colonization of Madagascar by sunbirds representing the souimanga clade. In concordance with the very young geological age of the Aldabra group, the sunbirds of this archipelago have diverged little from the Madagascar population; this is attributed to colonization of the Aldabra archipelago in recent times, in one or possibly two or more waves originating from Madagascar. The overall pattern of sunbird radiation across Indian Ocean islands indicates that these birds disperse across ocean barriers with relative ease, but that their subsequent evolutionary success probably depends on a variety of factors including prior island occupation by competing species.  相似文献   

13.
Aim  To determine patterns in diversity of a major Antarctic plant species, including relationships of Antarctic populations with those outside the Antarctic zone.
Location  Antarctic Peninsula, Maritime Antarctica, sub-Antarctic islands, Falkland Islands and South America.
Methods  Amplified fragment length polymorphisms (AFLPs) and chloroplast sequences were used to study patterns of genetic diversity in Antarctic hairgrass ( Deschampsia antarctica Desv.) and the genetic relationships between populations over its distribution range. Thirty-eight populations were sampled from a large part of the distribution of D. antarctica , and additionally, herbarium specimens were included for areas from which we could not obtain fresh samples.
Results  A gradient in AFLP diversity was observed going from the Falklands southwards into the Antarctic. This gradient in diversity was also observed within the Antarctic Peninsula: diversity was lower further south. Diversity in the chloroplast genome of D. antarctica was low. Only three chloroplast haplotypes were found, each with a strong regional distribution.
Main conclusions  The phylogenetic construction of AFLP marker frequencies in meta-populations of D. antarctica supports a stepping-stone model of colonization, whereby gene flow mainly occurs between neighbouring populations. It is concluded that long-distance gene flow is very limited in D. antarctica . A very low diversity was found in the sub-Antarctic islands in the Indian Ocean, indicating that these populations have experienced a recent evolutionary bottleneck.  相似文献   

14.
Aim The oriental magpie‐robin (Copsychus saularis) of South and Southeast Asia is a phenotypically variable species that appears to be closely related to two endemic species of the western Indian Ocean: the Madagascar magpie‐robin (Copsychus albospecularis) and the Seychelles magpie‐robin (Copsychus sechellarum). This unusual distribution led us to examine evolutionary relationships in magpie‐robins, and also the taxonomic significance of their plumage variation, via a molecular phylogenetic and population genetic analysis of C. saularis and C. albospecularis. Location Southern Asia from Nepal across Indochina to southern China, and the Indian Ocean from Madagascar to the Greater Sunda and Philippine islands. Methods We sequenced 1695 nucleotides of mitochondrial DNA comprising the complete second subunit of the nicotinamide adenine dinucleotide dehydrogenase (ND2) gene and 654 bases of the cytochrome c oxidase subunit I (COI) region in 51 individuals of eight C. saularis subspecies, 10 individuals of C. albospecularis (one subspecies) and single individuals of two other Copsychus species as outgroups. The data were analysed phylogenetically, with maximum likelihood, Bayesian, relaxed clock and parsimony methods, and geographically for patterns of genetic diversity. Results Phylogenetic analysis indicated that C. albospecularis lies within the nominal C. saularis, making C. saularis polyphyletic. Malagasy and non‐Philippine Asian populations form a monophyletic group that is sister to a clade of Philippine populations. Within non‐Philippine Asian populations, two groups are evident: black‐bellied birds in the eastern Greater Sunda islands and white‐bellied birds in the western Sundas and on mainland Asia. Main conclusions The phylogeny of magpie‐robins suggests a novel pattern of dispersal and differentiation in the Old World. Ancestral magpie‐robins appear to have spread widely among islands of the Indian Ocean in the Pliocene, probably aided by their affinity for coastal habitats. Populations subsequently became isolated in island groups, notably the Philippines, Madagascar and the Greater Sundas, leading to speciation in all three areas. Isolation in the Philippines may have been aided by competitive exclusion of C. saularis from Palawan by a congener, the white‐vented shama (Copsychus niger). In the Greater Sundas, white‐bellied populations appear to have invaded Borneo and Java recently, where they hybridize with resident black‐bellied birds.  相似文献   

15.
Today, the only surviving wild population of giant tortoises in the Indian Ocean occurs on the island of Aldabra. However, giant tortoises once inhabited islands throughout the western Indian Ocean. Madagascar, Africa, and India have all been suggested as possible sources of colonization for these islands. To address the origin of Indian Ocean tortoises (Dipsochelys, formerly Geochelone gigantea), we sequenced the 12S, 16S, and cyt b genes of the mitochondrial DNA. Our phylogenetic analysis shows Dipsochelys to be embedded within the Malagasy lineage, providing evidence that Indian Ocean giant tortoises are derived from a common Malagasy ancestor. This result points to Madagascar as the source of colonization for western Indian Ocean islands by giant tortoises. Tortoises are known to survive long oceanic voyages by floating with ocean currents, and thus, currents flowing northward towards the Aldabra archipelago from the east coast of Madagascar would have provided means for the colonization of western Indian Ocean islands. Additionally, we found an accelerated rate of sequence evolution in the two Malagasy Pyxis species examined. This finding supports previous theories that shorter generation time and smaller body size are related to an increase in mitochondrial DNA substitution rate in vertebrates.  相似文献   

16.
We report here the characteristics of 10 microsatellite markers isolated from a microsatellite‐enriched DNA library from Antirhea borbonica, Gmel (Rubiaceae). Antirhea borbonica is an endemic tree on the islands of La Réunion and Mauritius (Indian Ocean) where it occurs on young lava flows (fragmented and perturbed habitat) and in old primary forest. Ten polymorphic loci were characterized, with two to 15 alleles per locus, based on samples from six populations. These loci will be useful for analysing population structure in a metapopulation context where populations frequently go extinct.  相似文献   

17.
The invasive annual Bromus tectorum (cheatgrass) is distributed in Canada primarily south of 52° N latitude in two diffuse ranges separated by the extensive coniferous forest in western Ontario. The grass was likely introduced independently to eastern and western Canada post-1880. We detected regional variation in the grass's genetic diversity using starch gel electrophoresis to analyze genetic diversity at 25 allozyme loci in 60 populations collected across Canada. The Pgm-1a & Pgm-2a multilocus genotype, which occurs in the grass's native range in Eastern Europe, is prevalent in eastern Canada but occurs at low frequency in western Canada. In contrast, the Got-4c multilocus genotype, found in the native range in Central Europe, is widespread in populations from western Canada. Overall genetic diversity of B. tectorum is much higher in eastern Canada than in the eastern U.S., while the genetic diversity in populations in western North America is similar between Canada and the U.S. The distribution of genetic diversity across Canada strongly suggests multiple introduction events. Heterozygous individuals, which are exceedingly rare in B. tectorum, were detected in three Canadian populations. Formation of novel genotypes through occasional outcrossing events could spark adaptive evolution and further range expansion across Canada of this exceedingly damaging grass.  相似文献   

18.
The Titan Acorn barnacle, Megabalanus coccopoma, a native of the tropical eastern Pacific, has become established in the western Atlantic (Brazil and the northern Gulf of Mexico to the Carolinas), northwestern Europe and the western Indian Ocean (Mauritius), and therefore its dispersal capabilities are well known. This study reports its introduction to Japan and confirms its occurrence in Australia. In an attempt to determine the source of this introduction, phylogeographic techniques, involving cytochrome c oxidase I sequences of various widely separate populations of M. rosa and M. volcano, were utilized. No significant genetic differentiation or haplotype patterns between widely separated populations of each of the three species were found. Lack of such differentiation indicates recent geographical isolation and thus negates a null hypothesis predicting that the occurrence of one of more of these species in Australia was natural.  相似文献   

19.

Aim

Natural range expansions and human‐mediated colonizations usually involve a small number of individuals that establish new populations in novel habitats. In both cases, founders carry only a fraction of the total genetic variation of the source populations. Here, we used native and non‐native populations of the green anole, Anolis carolinensis, to compare the current distribution of genetic variation in populations shaped by natural range expansion and human‐mediated colonization.

Location

North America, Hawaiian Islands, Western Pacific Islands.

Methods

We analysed 401 mtDNA haplotypes to infer the colonization history of A. carolinensis on nine islands in the Pacific Ocean. We then genotyped 576 individuals at seven microsatellite loci to assess the levels of genetic diversity and population genetic differentiation for both the native and non‐native ranges.

Results

Our findings support two separate introductions to the Hawaiian Islands and several western Pacific islands, with subsequent colonizations within each region following a stepping‐stone model. Genetic diversity at neutral markers was significantly lower in the non‐native range because of founder effects, which also contributed to the increased population genetic differentiation among the non‐native regions. In contrast, a steady reduction in genetic diversity with increasing distance from the ancestral population was observed in the native range following range expansion.

Main conclusions

Range expansions cause serial founder events that are the spatial analogue of genetic drift, producing a pattern of isolation‐by‐distance in the native range of the species. In human‐mediated colonizations, after an initial loss of genetic diversity, founder effects appear to persist, resulting in overall high genetic differentiation among non‐native regions but an absence of isolation‐by‐distance. Contrasting the processes influencing the amount and structuring of genetic variability during natural range expansion and human‐mediated biological invasions can shed new light on the fate of natural populations exposed to novel and changing environments.
  相似文献   

20.
R Y Shirk  J L Hamrick  C Zhang  S Qiang 《Heredity》2014,112(5):497-507
Genetic diversity, and thus the adaptive potential of invasive populations, is largely based on three factors: patterns of genetic diversity in the species'' native range, the number and location of introductions and the number of founding individuals per introduction. Specifically, reductions in genetic diversity (‘founder effects'') should be stronger for species with low within-population diversity in their native range and few introductions of few individuals to the invasive range. We test these predictions with Geranium carolinianum, a winter annual herb native to North America and invasive in China. We measure the extent of founder effects using allozymes and microsatellites, and ask whether this is consistent with its colonization history and patterns of diversity in the native range. In the native range, genetic diversity is higher and structure is lower than expected based on life history traits. In China, our results provide evidence for multiple introductions near Nanjing, Jiangsu province, with subsequent range expansion to the west and south. Patterns of genetic diversity across China reveal weak founder effects that are driven largely by low-diversity populations at the expansion front, away from the introduction location. This suggests that reduced diversity in China has resulted from successive founder events during range expansion, and that the loss of genetic diversity in the Nanjing area was mitigated by multiple introductions from diverse source populations. This has implications for the future of G. carolinianum in China, as continued gene flow among populations should eventually increase genetic diversity within the more recently founded populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号