首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3beta-Hydroxy sterols occurring at a concentration of at least 0.001% of the sterol mixtures of Pseudoplexaura porosa and Plexaura homomalla have been fractionated using a series of refined techniques and subsequently analyzed using combined gas chromatography-mass spectrometry (GC-MS) in the development of a procedure for examining the minor and trace components of marine sterol mixtures. A total of 49 sterols were found which spanned a molecular weight range of 274 to 440. In addition delta4-3-keto analogs of cholesterol, 24-methylcholesterol and gorgosterol were found in the extracts of P. homomalla. Initial separation of various natural sterol-containing conjugates and free sterols was found to have a number of advantages. Fractional digitonin precipitation and alumina column chromatography were found to possess greater sterol separation abilities than previously recognized. Many of the minor sterols were found to possess novel structures including a series of short side chain sterols, 19-nor sterols, 5beta-stanols and 4-monomethyl sterols for which structure elucidation work is continuing.  相似文献   

2.
The effect of the length of the side chain of sterols on their interaction with phosphatidylcholine was studied by measuring the permeability properties of liposomes constituted with sterol analogues with side chains of various lengths. The sensitivities of liposomes constituted with these sterol analogues toward digitonin and polyene antibiotics were also examined.The effects of sterols on phase transition of phosphatidylcholine were examined by measuring their effects on permeability increase due to perturbation of phase equilibrium and by differential scanning calorimetry. An analogue with a short side chain, isopropyl (C-22), had a very similar effect to cholesterol in suppressing the permeability increase, suggesting that the full length of the side chain is not necessary for this effect.The permeability of egg yolk phosphatidylcholine at 42°C was suppressed as much by the analogue C-22 as by cholesterol. Androstene-3-β-ol, an analogue without a side chain, however, had little suppressive effect. Thus it is concluded that the condensing effect of sterol requires a side chain, but not the full length of side chain.Liposomes constituted with analogues having a side chain with more than 5 carbon atoms showed maximum reactivity with a polyene antibiotic, amphotericin B, whereas those constituted with analogues having a side chain with less than 4 carbon atoms showed weaker reactivity. These findings indicate that a side chain with more than 5 carbon atoms is essential for the maximum interaction of liposomes with amphotericin B. Unlike amphotericin B, filipin reacted almost equally well with liposomes containing C-22 and with those containing cholesterol. Thus the chain length of the side chain of sterol is less important for interaction of liposomes with filipin than for their interaction with amphotericin B.Liposomes containing analogues having a side chain with more than 6 carbon atoms showed maximum reactivity with digitonin. Thus for the maximum interaction of liposomes with digitonin, the side chain of sterol should be longer than 6 carbon atoms.  相似文献   

3.
The sterols present in one oceanic and two coastal tunicates have been determined by combined gas chromatography-mass spectrometry techniques.Very complex sterol profiles were found in a Pyrosoma sp. and Ascidia mentula O. F. Müller, with 25 and 27 sterols, respectively, in which a high proportion of the sterols were identified as saturated ring compounds. The analyses established the presence of related pairs of 5α-stanols and Δ5-sterols with identical sidechains, whereas Δ7-sterols were almost absent in these extracts. A number of the 5α-stanols found are very uncommon in the marine environment and the presence of new C31 and C32 sterols with long sidechains indicated in the Ascidia mentula extracts is notable.Extracts of the coastal species, Ciona intestinalis L., were much simpler and contained only 13 sterols, some of which were saturated ring compounds.  相似文献   

4.
Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses.  相似文献   

5.
We have investigated the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers containing a series of cholesterol analogues varying in the length and structure of their alkyl side chains. We find that upon the incorporation of up to approximately 25 mol % of any of the side chain analogues, the DPPC main transition endotherm consists of superimposed sharp and broad components representing the hydrocarbon chain melting of sterol-poor and sterol-rich phospholipid domains, respectively. Moreover, the behavior of these components is dependent on sterol side chain length. Specifically, for all sterol/DPPC mixtures, the sharp component enthalpy decreases linearly to zero by 25 mol % sterol while the cooperativity is only moderately reduced from that observed in the pure phospholipid. In addition, the sharp component transition temperature decreases for all sterol/DPPC mixtures; however, the magnitude of the decrease is dependent on the sterol side chain length. With respect to the broad component, the enthalpy initially increases to a maximum around 25 mol % sterol, thereafter decreasing toward zero by 50 mol % sterol with the exception of the sterols with very short alkyl side chains. Both the transition temperature and cooperativity of the broad component clearly exhibit alkyl chain length-dependent effects, with both the transition temperature and cooperativity decreasing more dramatically for sterols with progressively shorter side chains. We ascribe the chain length-dependent effects on transition temperature and cooperativity to the hydrophobic mismatch between the sterol and the host DPPC bilayer (see McMullen, T. P. W., Lewis, R. N. A. H., and McElhaney, R. N. (1993) Biochemistry 32:516-522).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Sterols and sphingolipids are considered mainly eukaryotic lipids even though both are present in some prokaryotes, with sphingolipids being more widespread than sterols. Both sterols and sphingolipids differ in their structural features in vertebrates, plants, and fungi. Interestingly, some invertebrates cannot synthesize sterols de novo and seem to have a reduced dependence on sterols. Sphingolipids and sterols are found in the plasma membrane, but we do not have a clear picture of their precise intracellular localization. Advances in lipidomics and subcellular fractionation should help to improve this situation. Genetic approaches have provided insights into the diversity of sterol and sphingolipid functions in eukaryotes providing evidence that these two lipid classes function together. Intermediates in sphingolipid biosynthesis and degradation are involved in signaling pathways, whereas sterol structures are converted to hormones. Both lipids have been implicated in regulating membrane trafficking.Typical examples of eukaryotic lipids, sterols, and sphingolipids can both be found in membranes from simple unicellular fungi and protists to multicellular animals and plants. Their versatile use as structural elements but also as signaling molecules has probably played an important role during the evolution of this large and diverse group of organisms. There are also many eukaryotes that have lost the ability to synthesize sterols de novo including nematodes, insects, and marine invertebrates, which have to take up sterols with their diet. Sterol biosynthesis has also been reported in a number of bacteria. Sphingolipids are more widely spread among prokaryotes than sterols and also show a greater variety of structures among the different eukaryotes.In this short review we will first give an overview about the diversity of sterol and sphingolipid structures and their distribution in nature. Then we will discuss their subcellular distribution. A brief technical section will add some information on the separation and detection of these lipid molecules. Subsequently, we will summarize different genetic approaches to study the functions of sterols and sphingolipids, and finally, we will discuss the functional and possible physical interactions of the two lipid classes within the cell. Far from being comprehensive, we will focus only on a few interesting aspects and try to give new view points, which are less frequently discussed.  相似文献   

7.
Acholeplasma laidlawii was grown with different fatty acids for membrane lipid synthesis (saturated straight- and branched-chain acids and mono- and di-unsaturated acids). The ability of 12 different sterols to affect cell growth, lipid head group composition, the order parameter of the acyl chains, and the phase equilibria of in vivo lipid mixtures was studied. The following two effects were observed with respect to cell growth: with a given acyl chain composition of the membrane lipids, growth was stimulated, unaffected, reduced, or completely inhibited (lysis), depending on the sterol structure; and the effect of a certain sterol depended on the acyl chain composition (most striking for epicoprostanol, cholest-4-en-3-one, and cholest-5-en-3-one, which stimulated growth with saturated acyl chains but caused lysis with unsaturated chains). The three lytic sterols were the only sterols that caused a marked decrease in the ratio between the major lipids monoglucosyldiglyceride and diglucosyldiglyceride and hence a decrease in bilayer stability when the membranes were enriched in saturated (palmitoyl) chains. With these chains correlations were found for several sterols between the glucolipid ratio and the order parameter of the acyl chains, as well as the lamellar-reversed hexagonal phase transition, in model systems. A shaft experiment revealed a marked decrease in the ratio of monoglucosyldiglyceride to diglucosyldiglyceride with the lytic sterols in unsaturated (oleoyl) membranes. The two cholestenes induced nonlamellar phases in in vivo mixtures of oleoyl A. laidlawii lipids. The order parameters of the oleoyl chains were almost unaffected by the sterols. Generally, the observed effects cannot be explained by an influence of the sterols on the gel-to-liquid crystalline phase transition.  相似文献   

8.
M Kobayashi  H Mitsuhashi 《Steroids》1974,24(3):399-410
Occelasterol, a new marine C27 sterol, has been isolated from an annelida, Pseudopotamilla occelata and its structure was confirmed as 22-trans-27-nor-(24S)-24-methylcholesta-5, 22-dien-3β-ol (IIa) from the spectral data and by synthesis. Thissterol, the second member of a class of sterols having 27-norergostane-type side chain, had been formerly regarded as 22-cis-cholesta-5, 22-dien-3β-ol (Va). Gas-liquid Chromatographic studies have shown that occelasterol is distributed in various amounts in most of marine invertebrates.  相似文献   

9.
Pneumocystis causes a type of pneumonia in immunodeficient mammals, such as AIDS patients. Mammals cannot alkylate the C-24 position of the sterol side chain, nor can they desaturate C-22. Thus, the reactions leading to these sterol modifications are particularly attractive targets for the development of drugs against fungal and protozoan pathogens that make them. In the present study, the definitive structures of 43 sterol molecular species in rat-derived Pneumocystis carinii were elucidated by nuclear magnetic resonance spectroscopy. Ergosterol, Delta(5,7) sterols, trienes, and tetraenes were not among them. Most (32 of the 43) were 24-alkylsterols, products of S-adenosyl-L-methionine:C-24 sterol methyl transferase (SAM:SMT) enzyme activity. Their abundance is consistent with the suggestion that SAM:SMT is highly active in this organism and that the enzyme is an excellent anti-Pneumocystis drug target. In contrast, the comprehensive analysis strongly suggest that P. carinii does not form Delta(22) sterols, thus C-22 desaturation does not appear to be a drug target in this pathogen. The lanosterol derivatives, 24-methylenelanost-8-en-3 beta-ol and (Z)-24-ethylidenelanost-8-en-3 beta-ol (pneumocysterol), previously identified in human-derived Pneumocystis jiroveci, were also detected among the sterols of the rat-derived P. carinii organisms.  相似文献   

10.
Mycoplasma gallisepticum was adapted to grow with delta 5-sterols modified in the aliphatic side chain, and stopped-flow kinetic measurements of filipin association were made to estimate the sterol distribution between the two leaflets of the membrane. Cholesterol derivatives with unsaturated side chains (desmosterol, cis- and trans-22-dehydrocholesterol, and cholesta-5,22E,24-trien-3 beta-ol) or an alkyl substituent (beta-sitosterol) were predominantly (86-94%) localized in the outer leaflet of the bilayer. However, cholesterol, 20-isocholesterol, and sterols with side chains of varying lengths (in the 20(R)-n-alkylpregn-5-en-3 beta-ol series where the alkyl group ranged from ethyl to undecyl) were distributed nearly symmetrically between the two halves of the bilayer. Kinetic measurements of beta-[14C]sitosterol and [14C]desmosterol exchange between M. gallisepticum cells and an excess of sonicated sterol/phosphatidylcholine vesicles confirmed the filipin-binding studies. More than 90% of these radiolabeled sterols underwent exchange at 37 degrees C with unlabeled sterols in vesicles over a period of 12-14 h in the presence of 2% (w/v) albumin. beta-[14C]Sitosterol exchange was characterized by biphasic exchange kinetics, indicative of two pools of sitosterol molecules in the cell membrane. Only a single kinetic pool was detected for [14C]desmosterol exchange. Stopped flow measurements of filipin binding to beta-sitosterol and stigmasterol also revealed an asymmetrical localization of these sterols in membranes of growing Mycoplasma. capricolum cells. When an early exponential culture of beta-sitosterol- or stigmasterol-adapted M. capricolum was transferred to a sterol-rich medium at 37 degrees C, approximately three-quarters of the beta-sitosterol or stigmasterol was localized in the outer leaflet after growth was continued for 6 h; in contrast, cholesterol was distributed symmetrically after about 1 h. The asymmetric localization of sterols with alkylated or unsaturated side chains suggests that growth-supporting sterols need not be translocated extensively into the inner leaflet of the bilayers of M. gallisepticum and M. capricolum.  相似文献   

11.
The influence of structural modifications in sterols and phospholipids on the rate of polyene antibiotic-sterol interaction was studied. For filipin and amphotericin B association with sterols in vesicles, a preferential interaction was found with sterols whose side chain length is close to that of cholesterol. Introduction of trans double bonds into the sterol side chain did not alter the rate of interaction in vesicles. The delta 7-bond of the sterol appears to be of critical importance in amphotericin B-sterol interaction, whereas the delta 5-bond is not essential. These observations are relevant to the well-known effects of amphotericin B on cell membranes containing ergosterol compared with those containing cholesterol. The dependence of the rates of sterol-polyene antibiotic interaction on the phospholipid composition of the vesicles indicates that phospholipid vesicles may be an inadequate model for reaching a comprehensive understanding of the effects exerted on biological membranes by these agents.  相似文献   

12.
The sterol mixture of the southern Japan's soft coral, Sarcophyton glaucum, was found to contain 11 sterols including a novel sterol, 23,24 xi-dimethylcholesta-5,22-dien-3 beta-ol and a new diunsaturated C29 sterol. 22,23-Dihydrobrassicasterol and gorgosterol were the major components in free- and esterified sterols respectively. Brassicasterol was found in S. glaucum, in contrast to the ubiquity of 24-epibrassicasterol in the marine invertebrates in the northern districts. The new sterol (sarcosterol) was isolated; its structure as 23 xi, 24 xi-dimethylcholesta-5, 17(20)-trans-dien-3 beta-ol was based on spectra evidence and comparison with cholesta-5, 17(20)-trans-dien-3 beta-ol.  相似文献   

13.
S Popov  R M Carlson  C Djerassi 《Steroids》1983,41(4):537-548
The first natural occurrence of 19-norcholestenone is reported, together with 17 sterols and one other delta 4-3-ketone in the extracts of the Californian gorgonian, Muricea californica (Aurivillius). Six additional demethyl sterols and five additional 4-monomethyl sterols which remain unidentified were also detected. Lipid extracts of M. californica from a winter and summer collection were split by various chromatographic methods into free sterol, steryl ester, and steryl conjugate fractions. Sterol compositions (determined by CG and CG-MS) of each fraction, subsequent to hydrolysis, are tabulated and discussed with respect to plausible origins of observed variations. The possible relationship of the Muricea 19-nor-steroidal ketone to other naturally occurring 19-nor-steroids is discussed.  相似文献   

14.
Two new marine sterols have been isolated from the sponge Pseudaxinella lunaecharta, and are shown to contain two double bonds in the side chains. The structures have been deduced by spectroscopic methods and confirmed by transformation of one of them to a known compound.  相似文献   

15.
We present a comparative differential scanning calorimetric study of the effects of the animal sterol cholesterol (Chol) and the plant sterols campesterol (Camp) and brassicasterol (Bras) on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. Camp and Bras differ from Chol in having a C24 methyl group and, additionally for Bras, a C22 trans-double bond. Camp and especially Bras decrease the temperature, cooperativity and enthalpy of the DPPC pretransition more than Chol, although these effects are attenuated at higher sterol levels. This indicates that they destabilize gel-state DPPC bilayers to a greater extent, but are less soluble, than Chol. Not surprisingly, all three sterols have similar effects on the sterol-poor sharp component of the DPPC main phase transition. However, Camp and especially Bras less effectively increase the temperature and decrease the cooperativity and enthalpy of the broad component of the main transition than Chol. This indicates that at higher sterol concentrations, Camp and Bras are less miscible and less effective than Chol at ordering the hydrocarbon chains of the sterol-enriched fluid DPPC bilayers. Overall, these alkyl side chain modifications generally reduce the ability of Chol to produce its characteristic effects on DPPC bilayer physical properties. These differences are likely due to the less extended and more bent conformations of the alkyl side chains of Camp and Bras, producing sterols with a greater effective cross-sectional area and reduced length than Chol. Hence, the structure of Chol is likely optimized for maximum solubility in, as opposed to maximum ordering of, phospholipid bilayers.  相似文献   

16.
The ability of fourteen marine invertebrates to utilize [(14)C]mevalonate for the biosynthesis of isoprenoid compounds was investigated. Several of the animals, in particular crustaceans, bivalve molluscs, a coelenterate and a sponge, were unable to synthesize squalene and sterols, whereas gastropod molluscs, echinoderms, an annelid and a sponge could. Regardless of sterol-synthesizing ability the animals (with the exception of a sponge) always made dolichol and ubiquinone, and thus a specific block in squalene and sterol synthesis was indicated in some animals. Radioactivity accumulated in relatively large amounts in farnesol and geranylgeraniol in those animals incapable of making sterols.  相似文献   

17.
Two new sterols, epipolasterol and 22(23)-dihydroepipolasterol, have been isolated from the marine sponge Epipolasis sp. These are unusual metabolites as they both contain a t-butyl group in the sterol side chain. In addition, the presence of two degrees of unsaturation in the side chain of epipolasterol is rare. The known sterol, 22-dehydro-24-isopropylcholesterol was also found in this sponge.  相似文献   

18.
The typical plant sterols (sitosterol, stigmasterol and campesterol) were compared with respect to their ability to regulate membrane fluidity of soybean phosphatidylcholine (PC) vesicles. Fluidity changes were monitored by the steady-state fluorescence anisotropy with 1,6-diphenyl-1,3,5-hexatriene as a probe and assigned to a measure of the acyl chain orientational order. Sitosterol and campesterol appear to be the most suitable sterols in ordering the acyl chains of soybean lecithin bilayers, even more efficient than cholesterol, the standard of reference for sterol effects on membranes, suggesting that they play a significant role in the regulation of plant membrane properties. Stigmasterol is shown to be much less active. Cycloartenol, a biosynthetic precursor of plant sterols, increases the acyl chain order with the same efficiency as cholesterol. We also investigated the effects of two unusual sterols, 24-methylpollinastanol and 14 alpha,24-dimethylcholest-8-en-3 beta-ol, which were shown to accumulate in plants treated with fungicides belonging to two important classes, N-substituted morpholines and triazoles, respectively. These two sterols exhibit a behavior very similar to that of stigmasterol. The results are discussed in terms of sterol effects on the molecular packing of soybean PC bilayers.  相似文献   

19.
None of the fourteen thermophilic moulds was able to break down the aliphatic side chain of sterols,viz. cholesterol, lanosterol, sitosterol, and stigmasterol so as to yield 4-androstene-3, 17-dione, 1,4-androstadiene-3, 17-dione and progesterone. InAcremonium alabamensis and.Talaromyces emersonii, cholestenone was detected as a product of fermentation of cholesterol whereas the former yielded stigmastadienone from stigmasterol and sitosterol. Lanosterol appeared to be resistant to fungal bioconversion. All the thermophilic moulds exhibited avidity for binding sterols to the mycelium, but the ability to bind sterol seemed to depend upon the nature of the organism and the sterol.  相似文献   

20.
Saccharomyces cerevisiae NCYC 366, grown under strictly anaerobic conditions to induce requirements for an unsaturated fatty acid (supplied by Tween 80) and a sterol, contained free sterol fractions enriched to the extent of 67 to 93% with the exogenously supplied sterol (campesterol, cholesterol, 7-dehydrocholesterol, 22, 23-dihydrobrassicasterol, beta-sitosterol, or stigmasterol). Cells enriched in any one of the sterols did not differ in volume, growth rate, contents of free sterol, esters and phospholipids, or phospholipid composition. Cholesterol-enriched cells contained about 2% more lipid than cells enriched in any of the other sterols, which was largely accounted for by increased contents of triacylglycerols and, to a lesser extent, esterified sterols. Phospholipids were enriched to the extent of about 52 to 63% with C18:1 residues. Cells enriched in ergosterol or stigmasterol were slightly less susceptible to the action of a wall-digesting basidiomycete glucanase than cells enriched with any one of the other sterols. The capacity of the plasma membrane to resist stretching, as indicated by the stability and volume of spheroplasts suspended in hypotonic solutions of buffered sorbitol (particularly in the range 0.9 to 0.7 M), was greater with spheroplasts enriched in sterols with an unsaturated side chain at C17 (ergosterol or stigmasterol) than with any of the other sterols. Plasma membranes were obtained from spheroplasts enriched in cholesterol or stigmasterol and had free sterol fractions containing 70 and 71%, respectively, of the sterol supplied exogenously to the cells. The sterol-phospholipid molar ratios in these membranes were, respectively, 1:7 and 1:8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号