首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution and ultrastructure of sensory nerve endings were investigated in the deep lateral elbow region of the rat. Three zones of distribution of mechanoreceptors were distinguished, each in relation to the functional architecture of the connective and muscular tissue in that area: (1) a zone with muscle spindles, Golgi tendon organs, free nerve endings and single small lamellated corpuscles ('muscle-tendon spectrum'), situated in the middle third of the supinator muscle and its superficial aponeurosis; (2) a zone with small lamellated corpuscles and free nerve endings, situated pericapsularly to the humeroradial joint capsule ('shearing spectrum'): this moderately dense, irregular connective tissue is covered by the proximal continuation of the supinator's aponeurosis, and muscle fibers insert from beneath this aponeurosis, which displays, as a part of the joint capsule, a strong collagenous tissue plate; (3) a zone with only free nerve endings within the tendon-like, most proximal part of the supinator's aponeurosis, inserting into the periosteal layer of the lateral humeral epicondyle ('endotenonial spectrum'): it is part of the joint capsule. The ultrastructure of these sensory endings is described and the distribution pattern of the mechanoreceptors observed is discussed in relation to the classification into 'muscle receptors' and 'joint receptors'.  相似文献   

2.
Summary In anuran tadpole tails, the myelinated motor nerve fibers branch in the myoseptum to innervate both red and white muscle fibers at, or near, their ends. There are no significant ultrastructural differences between the nerve endings of the two types of muscle fibers.Intense acetylcholinesterase reaction product was observed in synaptic clefts and junctional folds, as well as in transverse tubules. As metamorphosis proceeded, the junctional folds of the nerve endings disappeared, however, acetylcholinesterase reaction product was still observed in the synaptic clefts. As muscle fibers began to degenerate, nerve endings began to separate from them. However, after nerve endings were completely separated from the surfaces, degenerated muscle fibers, synaptic and cored vesicles were still well preserved although no acetylcholinesterase reaction product was found. It seems clear that the mechanism of the muscle degeneration in the tadpole tail during metamorphosis is not the result of the degeneration of its nerve endings.  相似文献   

3.
The distribution of laminar nerve endings that contained immunoreactive calretinin was examined in the laryngeal mucosa of the adult rat. In whole-mount preparations, the immunoreactive laminar endings were distributed in the supraglottic region but not in the subglottic region. The laminar endings that arose from thick nerve fibers with or without swellings were identified as corpuscles with many variform terminal arborizations. They appeared to be located at the interface between the epithelium and the subepithelial connective tissue. The terminals were scattered under the basal lamina of the epithelium, and some of them were located within the epithelial layer. Immunoelectron microscopy revealed that both sub- and intraepithelial immunoreactive terminals that were filled with mitochondria were partly or totally ensheathed by Schwann cell processes. The denervation experiments, in which the superior laryngeal nerve was cut unilaterally or bilaterally, suggested that the laminar endings originate from the superior laryngeal nerve with strict ipsilateral innervation. The laminar endings might be associated with detection of changes in pressure in the laryngeal cavity or chemical stimuli.  相似文献   

4.
The ultrastructure of substance P (SP)-containing axon terminals in the mucosa of the human urinary bladder was studied. Numerous SP-immunoreactive varicose nerve fibers were seen in the lamina propria, and most of them ran freely in the connective tissue. Many SP-immunoreactive nerve fibers were observed beneath the epithelium, and perivascular SP-immunoreactive nerves were also found in the submucosal layer. We observed a total of 305 SP-immunoreactive (IR) axon terminals, of which most (89.6%) were free nerve endings at the ultrastructural level; the rest of the SR-IR axon terminale were seen in the vicinity of the epithelium and blood vessels in the lamina propria. Varicose regions of SP-IR axon terminals contained large granular and small agranular synaptic vesicles, and most of them partially lacked a Schwann cell sheath. In some SP-IR varicosities, synaptic vesicles were concentrated in the region without any Schwann cell sheath. Long storage (for more than 1 month) of fixed-tissue pieces in sucrose before freezing has improved the ultrastructure of cryostat sections in pre-embedding immunohistochemistry. Trypsin digestion for the purpose of exposing antigenic sites was also employed before applying the first antiserum.  相似文献   

5.
The ultrastructure of sensory nerve endings was examined in joint capsules of large limb joints in three adult frogs (Rana temporaria). The joint receptors are represented by the only one kind of sensory nerve endings--by free nerve endings. The unmyelinized preterminal desintegrates into single terminals. This branching is bound on the most peripheral cell of the Schwann cell by means of mesaxons, they pass from the pericaryum of the Schwann cell peripherally. The branches of the nerve terminal are surrounded by a cover of 1...3 cytoplasmatic processes of the Schwann cell. The surface lamella is covered by a distinct basal membrane. Bundles of collagenous fibrils pass along the branches of the nerve terminal. Quite naked nerve endings were not observed. The axoplasma of the nerve terminal contains strikingly few cell organels. Besides axially passing neurofilaments and neurotubules only sporadic mitochondria and clear vesicles were observed. The accumulation of mitochondria, characteristic for the axoplasma of nerve terminals, was observed in no case. Free nerve endings which were found in the joint capsules of the frog belong among so called "free penicillate nerve endings".  相似文献   

6.
Nerve fibers and varicosities in the pelvic paracervical ganglia (PG) are immunoreactive for the neuropeptides calcitonin gene-related peptide, galanin, and the tachykinins substance P and neurokinin A. Many of these fibers and varicosities are capsaicin-sensitive, originate in dorsal root ganglia and, thus, are considered to be primary afferent fibers. Numerous immunoreactive varicosities are pericellular to principal neurons in the PG. The present study examines the ultrastructure of calcitonin gene-related peptide-, galanin-, substance P-, and neurokinin A-immunoreactive nerve fibers and varicosities in the ganglia to determine their relationships to principal neurons and their synaptic connectivity. Paracervical ganglia of female rats were processed for light-microscopic immunohistochemistry using antisera against synapsin I, as a nerve terminal marker, and microtubule-associated protein-2 to define soma and dendrites. The rationale for performing this co-immunohistochemical analysis was to reveal the relationship between nerve endings and principal neurons. Synapsin I endings were predominantly axosomatic with fewer being axodendritic. Other ganglia were processed for electron-microscopic immunohistochemistry using both standard immunogold and peroxidase-anti-peroxidase procedures. Unmyelinated fibers and varicosities immunoreactive for calcitonin gene-related peptide, galanin, and the tachykinins were routinely observed in the interstitium between neuron somas. Numerous immunoreactive axon profiles were present in small groups that were ensheathed by Schwann cells. Immunoreactive fibers and varicosities were also observed within the satellite-cell sheath of the neuron soma and often intimately associated with the membrane of the soma, somal protrusions, or with the proximal part of a dendrite. Membrane specializations, indicative of synaptic contacts, between the fibers and the principal neurons were observed. It is suggested that these peptide-immunoreactive sensory fibers and varicosities are involved in regulation of activity in the PG.  相似文献   

7.
Lymph node nerve endings have been studied in 1- to 48-day-old mice. Serial sections of Epon-embedded lymph nodes were observed under the electron microscope to find the nerve endings. Most lymph node nerve fibers finally reach the smooth muscle cells of arterioles and muscular venules. Both kinds of vascular endings are similar, although endings are less numerous on venules. Nerve endings consist of one or more nerve processes surrounded by a usually incomplete Schwann cell sheath; frequently, axons show wide areas directly facing the muscle cells. The distance between such a naked axon and a myocyte ranges from 100 to 800 nm. Small granulated and clear vesicles are especially abundant in varicosities of nerve processes that are located very close to muscle cells. Nerve endings of lymph node vasculature probably correspond to vasomotor sympathetic adrenergic endings, regulating the degree of contraction of vessels which have a muscular layer. Other kinds of nerve endings also exist in lymph nodes: some axons appear free in the stroma and contact the surfaces of reticular cells; the latter also extend delicate cytoplasmic processes that surround the axons. The functional significance of nerve cell-reticular cell contacts is unknown.  相似文献   

8.
Neural lobes of rats subjected to dehydration by drinking 2% saline for four days were examined electron microscopically and compared to untreated controls. The ultrastructure of the blood vessels and the tissues surrounding them were examined and it was found that, although few exocytotic figures could be seen in either group of animals, a significantly larger (P smaller than 0.01) number os small vesicles were found in nerve endings adjacent to the perivascular space in the saline treated group when compared to nerve endings not closely associated with blood vessels. No differences were found in the control group of animals, which supports the suggestion that the vesicles could arise from a membrane recapture process.  相似文献   

9.
The nerve fiber distribution in the epidermis of the hairless rat skin was studied light microscopically by means of zinc iodide-osmium tetroxide staining. Two different morphological types of free nerve fiber endings could be detected: clusters of relatively thick nerve fibers stretched up through the spinous layer up to the granular layer sending off terminal branches. In addition, many solitary thin varicose nerve fibers were seen within the epidermis. The observed discrepancies in nerve fiber diameters appeared to be larger than those reported for human intraepidermal nerve fibers in recent immunohistochemical studies. Moreover, dendritic cells, most probably representing Langerhans cells, could be selectively stained. These cells appeared to be in a close location to thin varicose nerve fibers. Both types of demonstrated free nerve endings have to be functionally connected with different sensoric functions. Possibly, a subpopulation of the thin nerve fibers might possess primarily a nociceptive task, whereas the thick ones have most probably to be regarded as mechanoreceptive. The nerve fibers innervating dendritic cells appear to be identical to the peptidergic ones which may regulate the antigen-presenting capacity of these cells. Due to its selectivity for intraepidermal nerve fibers, the used method might supplement immunohistochemical procedures in a helpful manner.  相似文献   

10.
The ultrastructure of nerve endings in the oviduct visceral muscles of Locusta migratoria was studied by electron microscopy and by immunogold labeling for two kinds of neuromodulators, the pentapeptide proctolin and FMRFamide-related peptides. Nerve endings contained electron-lucent round vesicles and two kinds of granules (round and avoid), and formed two types of synapses or release sites with the muscle. The morphologically distinct nerve endings were classified into three different categories based on the composition of synaptic vesicles and granules. Type-I nerve endings were dominated by electron-lucent round vesicles and contained only a few round electron-dense granules. Type-II nerve endings contained mostly electron-dense round granules and electron-lucent round vesicles. A few electron-dense ovoid granules were also present. Electron-dense ovoid granules dominated the type-III nerve endings, which usually contained less electron-lucent vesicles than either type-I or II nerve endings. Both proctolin and FMRFamide-like immunoreactivity was associated with electron-dense round granules. However, FMRFamide-like immunoreactivity was only found in the type-II nerve endings, while proctolin immunoreactivity was found within type-I nerve endings as well as in some type-II nerve endings. Immunological results therefore allow us to further divide type-II nerve endings into type-IIa (immunonegative for proctolin) and type-IIb (immunopositive for proctolin). Type-III nerve endings show no immunolabeling to either proctolin or FMRFamide.  相似文献   

11.
The present research shows that sensory ganglion cells are located within the oculomotor nerve of monkeys and man. Furthermore, afferent fibers have been found in the IIIrd nerve of all the animals examined (lamb, pig, cat, dog and monkey). These fibers have their perikarya prevalently in the semilunar ganglion. Their pathway could be studied after section of either the trigeminal ophthalmic branch or of the intracranial portion of the IIIrd nerve. Following these operations, degenerating fibers were found entering the brain stem through the oculomotor nerve. In the brain stem, they were traced through the pons and the medulla and were seen to end in the spinal cord, within the subnucleus gelatinosus of the nucleus caudalis trigemini. Their degenerating endings found in the neuropil of the SG Rolandi, represented peripheral axonal endings of the glomeruli, rather than central axonal endings, as was the case after trigeminal rhizotomy. On the basis of these different degenerating patterns, the conclusion can be reached that the perikarya of the afferent fibers located in the semilunar ganglion represent, in reality, a ganglion of the IIIrd nerve.  相似文献   

12.
The surface receptors in Branchiobdella pentodonta consist of “sense buttons” prevalent on the prostomium, isolated sense cells all along the body of the animal, and free nerve endings. The “sense buttons” are uni- and multiciliated neurosensitive elements and supporting cells together with mucus glandular processes and muscle fibers. In the neurosensitive elements the cilia are always surrounded by cytoplasmic extroversion. The cytoplasm of the apical zone has abundant small dense granules, mitochondria, bands of tonofilaments, and microtubules. The cilium of uniciliated elements originates from three short roots. The highly vacuolated support cells surround the neurosensitive elements, separating them from each other. The “sense buttons” appear to be mechanoreceptors and chemoreceptors, and the isolated sense cells tactile mechanoreceptors, as are the free nerve endings. The surface receptors are compared with those of other Oligochaeta and Hirudinea.  相似文献   

13.
The dentate fascia of the hippocampal formation isolated from 20-day-old Wistar rat fetuses was subjected to heterotopic transplantation into the somatosensory area of the neocortex of adult rats of the same strain. Five months after surgery, neurotransplantates, together with neighboring area of the neocortex, were studied using light and electron microscopy. We carried out a detailed study of the ultrastructure of the ectopic synaptic endings formed by the axons of granular neurons of the dentate fascia (mossy fibers) with neurons of the neocortex unusual for them in a normal state. Ultrastructural analysis revealed that most ectopic synaptic endings produce its determinant morphological features: giant sizes of presynaptic knobs, active zones with branched dendritic spines, and adherens junctions with the surface of dendrites. The data indicate that the mossy fibers growing from neurotransplantates induce structural and chemical reorganization of dendrites of the neocortex using transmembrane adherens junctions, such as puncta adherentia junctions. This results in the differentiation of active zones and development of dendritic spines typical for giant synaptic endings that are invaginated into presynaptic endings. Thus, the ability of neurons of the dentate fascia to form aberrant synaptic connections at transplantation results from the inductive synaptogenic properties of mossy fibers.  相似文献   

14.
The efferent innervation and some characteristics of nerve fibers of the liver lobule in the tree shrew, a primate, are described. Nerve endings on hepatocytes were encountered regularly and were determined to be efferent adrenergic nerves. Transmission electron microscopy revealed nerve endings and varicosities in close apposition to the hepatocytes adjacent to the connective tissue of the triads as well as within the liver lobule in the space of Disse. Fluorescence microscopy indicated the existence of adrenergic nerves with a similar distribution. Autoradiography of the avid uptake of exogenous [3H]norepinephrine indicated that all intralobular nerves are potentially norepinephrinergic (adrenergic). Chemical sympathectomy with 6-OH-dopamine resulted in the degeneration of all intralobular liver nerve fibers as revealed by fluorescence microscopy and electron microscopy. Substantial regeneration occurred after 60-90 days but was not completed by that time. Some nerves were also observed in close association with von Kupffer cells and endothelial cells. The functional significance of the efferent liver innervation is discussed.  相似文献   

15.
Summary Two types of nerve endings in the muscular wall of the descendent colon and rectum are shown in this paper. The first one, is constituted by thick extrinsic fibers ending by neurofibrillar sharpened points which are subdivided in two groups; unlimited endings having its branches placed among the muscular fascicles is one of them (interfascicular nerve endings). The other one belongs to limited endings sited in connective spaces sourrounded by the muscular bundles. The second type of neuromuscular relation is integrated by long and slender fibers. In some cases its origine of a local neuron was prooved by us.Endings in the mucous layer were also found. The Lieberkühn glands have nervous fibers distributing only at its bottom; nervous fibers supply only the upper part of the glands and also the epithelial surface, and an intermediary type of them distributing its branches to the whole width of the mucosae.  相似文献   

16.
Nerve endings in skin are involved in physiological processes such as sensing1 as well as in pathological processes such as neuropathic pain2. Their close-to-surface positioning facilitates microscopic imaging of skin nerve endings in living intact animal. Using multiphoton microscopy, it is possible to obtain fine images overcoming the problem of strong light scattering of the skin tissue. Reporter transgenic mice that express EYFP under the control of Thy-1 promoter in neurons (including periphery sensory neurons) are well suited for the longitudinal studies of individual nerve endings over extended periods of time up to several months or even life-long. Furthermore, using the same femtosecond laser as for the imaging, it is possible to produce highly selective lesions of nerve fibers for the studies of the nerve fiber restructuring. Here, we present a simple and reliable protocol for longitudinal multiphoton in vivo imaging and laser-based microsurgery on mouse skin nerve endings.  相似文献   

17.
Zusammenfassung Im Anschluß an frühere lichtmikroskopisch erhobene Befunde (Silberimprägnation; 1924, 1928) weist der Verfasser durch elektronenmikroskopische Untersuchungen nach, daß durch die Interzellularspalten des Epithels (Schnauze der weißen Ratte) Nervenfasern hindurchziehen. Diese Nervenfäserchen, ihre Varikositäten und ihre Endknöpfchen liegen in den Spalten zwischen den Epithelzellen. Die Ultrastruktur der nackten, d.h. von Schwannschen Zellen nicht umhüllten terminalen Nervenfasern und ihrer Endigungen im Epithel wird beschrieben.
On intraepithelial nerve endings in a stratified squamous epithelium
Summary In addition to former light microscopical observations the author demonstrates electronmicroscopically that nerve fibers pass through the intercellular spaces of the epithelium. The nerve fibers, their varicosities and terminal bulbs lie within the spaces between the epithelial cells. The ultrastructure of the terminal nerve fibers in the epithelium is described.
  相似文献   

18.
R I Volkova 《Tsitologiia》1978,20(3):286-290
Perisomatic processes are shown to be temporary morphological formations that appear within 16-28 weeks of embryogenesis, their development being characterized by a certain succession. Perisomatic processes form multiple synaptic complexes with axon endings of unknown origin adherent to perikaryons of pear-shaped neurons. These axon endings are supposed to belong to afferent climbing fibers of cerebellum stimulating differentiation of pear-shaped neurons, localization of these fibers causing a certain succession in the development of perisomatic processes.  相似文献   

19.
A combination of methods is described to identify and reconstruct corpuscular and non-corpuscular sensory endings of group II and group III nerve fibers following functional examination by electrophysiology. Afferent units activated by electrical stimulation of the medial articular nerve of the cat's knee were analyzed by single fiber recordings and characterized by their responsiveness to mechanical stimuli. The receptive fields of the units were closely demarcated by fine needles when the responses elicited by insertion of the needles were being recorded. After fixation, the tissue around the demarcated field was dissected and histologically processed. Series of semithin sections were cut from the embedded tissue blocks containing the receptive fields. Corpuscular endings of group II fibers and peripheral myelinated group III nerve fibers, presumably corresponding to the characterized units, were identified by light microscopy of semithin sections and localized within the demarcated area. Non-corpuscular endings were identified by electron microscopy of ultrathin sections cut in alternation with, or after re-embedding of, semithin sections. Morphometric analysis of ultrathin section series allowed the measurement of parameters such as the mean axon diameter and the organelle content of the sensory endings. The methods described are appropriate for collecting data that correlate the structural and functional characteristics of sensory endings in deep tissues.  相似文献   

20.
The sympathetic ganglion contains small intensely fluorescent (SIF) cells derived from the neural crest. We morphologically characterize SIF cells and focus on their relationship with ganglionic cells, preganglionic nerve fibers and sensory nerve endings. SIF cells stained intensely for tyrosine hydroxylase (TH), with a few cells also being immunoreactive for dopamine β-hydroxylase (DBH). Vesicular acetylcholine transporter (VAChT)-immunoreactive puncta were distributed around some clusters of SIF cells, whereas some SIF cells closely abutted DBH-immunoreactive ganglionic cells. SIF cells contained bassoon-immunoreactive products beneath the cell membrane at the attachments and on opposite sites to the ganglionic cells. Ganglion neurons and SIF cells were immunoreactive to dopamine D2 receptors. Immunohistochemistry for P2X3 revealed ramified nerve endings with P2X3 immunoreactivity around SIF cells. Triple-labeling for P2X3, TH and VAChT allowed the classification of SIF cells into three types based on their innervation: (1) with only VAChT-immunoreactive puncta, (2) with only P2X3-immunoreactive nerve endings, (3) with both P2X3-immunoreactive nerve endings and VAChT-immunoreactive puncta. The results of retrograde tracing with fast blue dye indicated that most of these nerve endings originated from the petrosal ganglion. Thus, SIF cells in the superior cervical ganglion are innervated by preganglionic fibers and glossopharyngeal sensory nerve endings and can be classified into three types. SIF cells might modulate sympathetic activity in the superior cervical ganglion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号