首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The analysis of single nucleotide polymorphisms (SNPs) is increasingly utilized in the study of various genetic determinants. Here, we introduce a simple, rapid, low-cost and accurate procedure for the detection of SNPs by polyacrylamide gel electrophoresis (PAGE) with a novel additive, the Zn2+- cyclen complex (cyclen = 1,4,7,10-tetraazacyclododecane). The method is based on the difference in mobility of mutant DNA (in the same length) in PAGE, which is due to Zn2+-cyclen binding to thymine bases accompanying a total charge decrease and a local conformation change of target DNA. Various nucleotide substitutions (e.g. AT to GC) in DNA fragments (up to 150 bp) can be visualized with ethidium bromide staining. Furthermore, heteroduplex and homoduplex DNAs are clearly separated as different bands in the gel. We demonstrate the analysis of single- and multiple-nucleotide substitutions in a voltage-dependent sodium channel gene by using this novel procedure (Zn2+-cyclen-PAGE).  相似文献   

4.
Detection, sequence patterns and function of unusual DNA structures.   总被引:25,自引:14,他引:11       下载免费PDF全文
Unusual DNA structures were detected by an electrophoretic procedure in which DNA fragments were separated according to size on agarose gels and then by shape on polyacrylamide gels. Fragments from yeast centromeres migrated faster in polyacrylamide than predicted from their base composition and size and this property was attributed to a nonrandom distribution of oligomeric A tracts that exhibited minima at 10-11 base intervals. Fragments from seven loci in 107 kb of DNA migrated anomalously slow and these fragments contained blocks of A2-6 in a 10-11 base periodicity which is indicative of bent DNA. The most pronounced bent sequences were found within yeast ARS1 and centered at 245 and 240 bp from the left and right ends of the adenovirus genome. Each sequence is approximately 150 bp away from a replication origin and the adenovirus sequences are within 50 bp of enhancers. Nuclear matrix attachment sites, which are also adjacent to enhancers, contain sequences characteristic of bent DNA. These results suggest that bent structures reside at the base of DNA loops in chromosomes.  相似文献   

5.
6.
To study the helical structure in a P-loop formed by an invasion of oligopyrimidine peptide nucleic acid (PNA) into DNA duplex, bent DNA fragments containing a homopurine.homopyrimidine sequence between two bent DNA loci were prepared. As the spacer DNA length between the two bent loci varied by 1 bp over one helical turn, the electrophoretic mobility, reflecting the overall extent of DNA bending, was modulated sinusoidally in non-denaturing 5% polyacrylamide gel. When the bent DNA fragments differing in the spacer DNA length were preincubated with an oligopyrimidine PNA, the gel mobilities were changed due to a P-loop formation. By analyzing the gel mobility data with variations of the P-loop size, average helical parameters at the P-loop structure were determined. (PNA)2. (DNA) triplex within a P-loop had the helical periodicities of 15. 6(0.2) bp per turn at 20 degrees C and 17.4(0.7) bp per turn at 10 degrees C. In addition, the results indicate that a helical unwinding by 57(7) degrees at 20 degrees C and 37(13) degrees at 10 degrees C is present at the two junctions between a P-loop and its adjacent DNA duplex.  相似文献   

7.
Helical phasing between DNA bends and the determination of bend direction.   总被引:11,自引:1,他引:10  
The presence and location of bends in DNA can be inferred from the anomalous mobility of DNA fragments or protein-DNA complexes during electrophoresis in polyacrylamide gels. Direction of bending is not so easily determined. We show here that a protein-induced bend, when linked to a protein-independent DNA bend by a segment of variable length, exhibits an electrophoretic mobility that varies in a sinusoidal manner with the length of the linker. Mobility minima occur once for each addition to the linker of one helical turn of DNA. Since minima should occur when two bends reinforce one another, the direction of one bend relative to the other can be determined from the distances between the two centers of bending at which minima occur. Our results strongly support the idea that the A5-6 tracts in kinetoplast DNA bend towards the minor groove while the bend at the recombination site of the gamma delta resolvase (binding site I of the gamma delta res site) bends towards the major groove.  相似文献   

8.
We report a safe, rapid, and economical method for polymerase chain reaction (PCR)-based genotype analysis using a microsatellite marker specific for the human chromosome 18 locus, D18S53. This method does not involve radioisotopes and makes use of ethidium bromide fluorescence to detect PCR products. Our method enables direct analysis and easy detection of PCR products on nondenaturing polyacrylamide gels. The genotyping using this method can be scaled up to 100 samples at one time by adding a step of “double loading” of samples in a single sequencing size gel. We could resolve PCR products and DNA fragments, differing in size by only 2 bp, in the range of 150–200 bp by a 7% nondenaturing polyacrylamide gel. This technique can be applied for population-based genomic screening and linkage analysis.  相似文献   

9.
A 410 base-pair (bp) Sau3A restriction fragment derived from a Leishmania tarentolae kinetoplast DNA minicircle, which is known to have slower than expected electrophoretic mobilities in polyacrylamide gels, has been cloned in a plasmid and deletions from one end of the cloned segment have been constructed. Analysis of the gel electrophoretic mobility data of a large number of restriction fragments derived from the kinetoplast DNA clone and its deletion subclones has led to the conclusion that two sequences, one in the region bp 100 to 170 and the other bp 190 to 250, both numbered from one end of the 410 bp kinetoplast DNA segment, are important for the abnormal gel electrophoretic behavior of the kinetoplast DNA fragment. One common feature of these sequences is the periodic presence of short runs of A residues (3 to 6 As in each); auto-correlation analysis of these runs of A residues shows a strong harmonic component with a period around 11 bp. These results support and extend the previous analysis of Wu & Crothers (1984). The abnormal electrophoretic behavior is accentuated at low temperature and by the addition of Mg2+ to the electrophoresis buffer; addition of Na+ has the opposite effect. Insertion of sequences derived from the kinetoplast DNA fragment into nicked circular DNA causes no unexpected change in its electrophoretic mobility in agarose gel, suggesting that the 410 bp sequence, or segments of it, has no significant spatial writhe. Abnormal shifts in agarose gel mobilities are observed, however, when certain segments of the kinetoplast DNA are inserted into positively or negatively supercoiled DNA topoisomers. These results are consistent with a bent structure of the kinetoplast DNA in which the bend has zero writhe in its undistorted form but is easily distorted.  相似文献   

10.
The interaction of E. coli's integration Host Factor (IHF) with fragments of lambda DNA containing the cos site has been studied by gel-mobility retardation and electron microscopy. The cos fragment used in the mobility assays is 398 bp and spans a region from 48,298 to 194 on the lambda chromosome. Several different complexes of IHF with this fragment can be distinguished by their differential mobility on polyacrylamide gels. Relative band intensities indicate that the formation of a complex between IHF and this DNA fragment has an equilibrium binding constant of the same magnitude as DNA fragments containing lambda's attP site. Gel-mobility retardation and electron microscopy have been employed to show that IHF sharply bends DNA near cos and to map the bending site. The protein-induced bend is near an intrinsic bend due to DNA sequence. The position of the bend suggests that IHF's role in lambda DNA packaging may be the enhancement of terminase binding/cos cutting by manipulating DNA structure.  相似文献   

11.
12.
13.
DNA restriction fragments that are stably curved are usually identified by polyacrylamide gel electrophoresis because curved fragments migrate more slowly than normal fragments containing the same number of basepairs. In free solution, curved DNA molecules can be identified by transient electric birefringence (TEB) because they exhibit rotational relaxation times that are faster than those of normal fragments of the same size. In this article, the results observed in free solution and in polyacrylamide gels are compared for a highly curved 199-basepair (bp) restriction fragment taken from the VP1 gene in Simian Virus 40 (SV40) and various sequence mutants and insertion derivatives. The TEB method of overlapping fragments was used to show that the 199-bp fragment has an apparent bend angle of 46 +/- 2 degrees centered at sequence position 1922 +/- 2 bp. Four unphased A- and T-tracts and a mixed A3T4-tract occur within a span of approximately 60 bp surrounding the apparent bend center; for brevity, this 60-bp sequence element is called a curvature module. Modifying any of the A- or T-tracts in the curvature module by site-directed mutagenesis decreases the curvature of the fragment; replacing all five A- and T-tracts by random-sequence DNA causes the 199-bp mutant to adopt a normal conformation, with normal electrophoretic mobilities and birefringence relaxation times. Hence, stable curvature in this region of the VP1 gene is due to the five unphased A- and T- tracts surrounding the apparent bend center. Discordant solution and gel results are observed when long inverted repeats are inserted within the curvature module. These insertion derivatives migrate anomalously slowly in polyacrylamide gels but have normal, highly flexible conformations in free solution. Discordant solution and gel results are not observed if the insert does not contain a long inverted repeat or if the long inverted repeat is added to the 199-bp fragment outside the curvature module. The results suggest that long inverted repeats can form hairpins or cruciforms when they are located within a region of the helix backbone that is intrinsically curved, leading to large mobility anomalies in polyacrylamide gels. Hairpin/cruciform formation is not observed in free solution, presumably because of rapid conformational exchange. Hence, DNA restriction fragments that migrate anomalously slowly in polyacrylamide gels are not necessarily stably curved in free solution.  相似文献   

14.
15.
The effects of various drugs on the structure of a bent DNA fragment have been investigated by studying DNA mobility in polyacrylamide gels. This DNA fragment has an anomalously slow rate of migration on account of its phased runs of adenines. Nogalamycin and echinomycin increase the gel mobility of kinetoplast DNA suggesting that the bending has been removed. Mithramycin, actinomycin, distamycin and ethidium have either no effect or cause a further reduction in mobility. These results are compared with other, non-bent DNA species which always show a decrease in gel mobility in the presence of DNA binding drugs.  相似文献   

16.
Replication of the Chinese hamster dihydrofolate (dhfr) gene initiates near a 281-bp HaeIII fragment of stably bent DNA that binds RIP60, a 60-kDa origin-specific DNA-binding protein that has been purified from HeLa cell nuclear extract (L. Dailey, M. S. Caddle, N. Heintz, and N. H. Heintz, Mol. Cell. Biol. 10:6225-6235, 1990). Circular permutation assays showed that stable DNA bending in the dhfr origin region fragment was due to the presence of five oligo (dA)3-4 tracts, designated bend elements B1 to B5, that are spaced 10 bp apart. DNA bending directed by elements B1 to B5, as assessed by anomolous migration of DNA fragments on polyacrylamide gels, was accentuated at 4 degrees C. Bend element B5, which is in inverse orientation relative to elements B1 to B4, overlaps an ATT-rich motif that comprises the RIP60 protein-binding site. Gel mobility shift assays with circularly permuted bent DNA fragments and purified RIP60 showed that RIP60 markedly enhanced DNA bending of the dhfr origin region sequences. These results suggest that, as in many plasmids, bacteriophages, and eucaryotic viruses, mammalian DNA-binding proteins may enhance DNA bending near origins of replication during initiation of DNA synthesis.  相似文献   

17.
An Alu I family of repeated DNA sequence 113 bp in length was found to be the major component of the heterochromatin in Artemia franciscana. On the basis of the analysis of cloned oligomeric (monomer to examer) heterchromatic fragments we predicted that the sequence could produce a stable curvature in chromosomal DNA. This prediction was confirmed by polyacrylamide gel electrophoresis analysis and by electron microscope observations. The anomalous mobility of these fragments is reversed when the DNA samples are electrophoresed in the presence of distamycin A. Moreover treatment of living Artemia with this drug produces visible decondensation of heterochromatic masses in the interphase nuclei.  相似文献   

18.
Lu Y  Weers BD  Stellwagen NC 《Biopolymers》2003,70(2):270-288
Transient electric birefringence has been used to analyze DNA bending in six restriction fragments containing 171, 174, 207, 263, 289, and 471 bp in three different low ionic strength buffers. The target fragments contain sequences corresponding to the apparent bend centers in pUC19 and Litmus 28, previously identified by the circular permutation assay (Strutz, K.; Stellwagen, N. C. Electrophoresis 1996, 17, 989-995). The target fragments migrate anomalously slowly in polyacrylamide gels and exhibit birefringence relaxation times that are shorter than those of restriction fragments of the same size, taken from nonbent regions of the same plasmids. Apparent bend angles ranging from 30 degrees to 41 degrees were calculated for the target fragments by tau-ratio method. The bend angles of four of the target fragments were independent of temperature from 4 degrees C to 20 degrees C, but decreased when the temperature was increased to 37 degrees C. The bend angles of the other two target fragments were independent of temperature over the entire range examined, 4 degrees -37 degrees C. Hence, the thermal stability of sequence-dependent bends in random-sequence DNA is variable. The bend angles of five of the six target fragments were independent of the presence or absence of Mg2+ ions in the solution, indicating most of the target fragments were stably bent or curved, rather than anisometrically flexible. Restriction fragments containing 219 and 224 bp, with sequences somewhat offset from the sequence of the 207 bp fragment, were also studied. Comparison of the tau-ratios of these overlapping fragments allowed both the bend angle and bend position to be independently determined. These methods should be useful for analyzing sequence-dependent bending in other random-sequence DNAs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号