首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A single dominant factor, Hss, that conditions a rapid lethal necrotic response to soybean mosaic virus (SMV) has been identified in Phaseolus vulgaris L. cv. Black Turtle Soup, line BT-1. Inoculated plants carrying this factor developed pinpoint necrotic lesions on inoculated tissue followed by systemic vascular necrosis and plant death within about 7 days, regardless of ambient temperature. BT-1 also carries dominant resistance to potyviruses attributed to the tightly linked or identical factors, I, Bcm, Cam, and Hsw, so linkage with Hss was evaluated. No recombinants were identified among 381 F3 families segregating for potyvirus susceptibility, thus if Hss is a distinct factor, it is tightly linked to I, Bcm, Cam, and Hsw. BT-1 was also crossed reciprocally with the line Great Northern 1140 (GN 1140) in which the dominant gene, Smv, for systemic resistance to SMV was first identified. Smv and Hss segregated independently and are co-dominant. The (GN 1140 x BT-1) F1 populations showed a seasonal shift of the codominant phenotype. Evaluation of the (GN 1140 x BT-1) F2 population under conditions where Smv is partially dominant allowed additional phenotypic classes to be distinguished. Pathotype specificity has not been demonstrated for either Smv or Hss. Genotypes that are homozygous for both dominant alleles are systemically resistant to the virus and in addition show undetectable local viral replication or and no seed transmission. This work demonstrates that a gene which conditions a systemic lethal response to a pathogen may be combined with additional gene(s) to create an improved resistant phenotype.  相似文献   

2.
We have identified monogenic dominant resistance to azuki bean mosaic poty virus (AzMV), passionfruit woodiness potyvirus-K (PWV-K), zucchini yellow mosaic potyvirus (ZYMV), and a dominant factor that conditioned lethal necrosis to Thailand Passiflora potyvirus (ThPV), in Phaseolus vulgaris Black Turtle Soup 1. Resistance to AzMV, PWV-K, ZYMV, watermelon mosaic potyvirus, cowpea aphid-borne mosaic potyvirus, blackeye cowpea mosaic potyvirus, and lethal necrosis to soybean mosaic potyvirus and ThPV cosegregated as a unit with the I gene for resistance to bean common mosaic potyvirus.  相似文献   

3.
Summary Resistance to watermelon mosaic virus-2 in Phaseolus vulgaris L. is conferred by two distinct dominant alleles at independent loci. Based on segregation data one locus is designated Wmv, the other, Hsw. The dominant allele Wmv from cv. Great Northern 1140 prevents systemic spread of the virus but viral replication occurs in inoculated tissue. In contrast, Hsw confers both local and systemic resistance to WMV-2 below 30C. At higher temperatures, plants that carry this allele in the absence of modifying or epistatic factors develop systemic veinal necrosis upon inoculation with the virus that results in rapid death. Patho-type specificity has not been demonstrated for either allele; both factors confer resistance to every isolate tested. A temperature-sensitive shift in epistasis is apparent between dominant alleles at these loci. Because Hsw is very tightly linked if not identical to the following genes for hypersensitivity to potyviruses I, (bean common mosaic virus), Bcm, (blackeye cowpea mosaic virus), Cam, (cowpea aphid-borne mosaic virus) and Hss (soybean mosaic virus), parental, reciprocal dihybrid F1 populations, and selected F3 families were inoculated with each of these viruses and held at 35 C. F1 populations developed vascular necrosis completely or primarily limited to inoculated tissue, while F3 families from WMV-2-susceptible segregates were uniformly susceptible to these viruses. The relationship between Hsw, Wmv and other genes for potyvirus resistance suggest patterns in the evolution of resistance and viral pathogenicity. Characterization of the resistance spectrum associated with each factor provides an additional criterion to distinguish genes for plant virus resistance.  相似文献   

4.
Soybean mosaic virus (SMV), a potyvirus, is the most prevalent and destructive viral pathogen in soybean-planting regions of China. Moreover, other potyviruses, including bean common mosaic virus (BCMV) and watermelon mosaic virus (WMV), also threaten soybean farming. The eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in controlling resistance/susceptibility to potyviruses in plants. In the present study, much higher SMV-induced eIF4E1 expression levels were detected in a susceptible soybean cultivar when compared with a resistant cultivar, suggesting the involvement of eIF4E1 in the response to SMV by the susceptible cultivar. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that soybean eIF4E1 interacted with SMV VPg in the nucleus and with SMV NIa-Pro/NIb in the cytoplasm, revealing the involvement of VPg, NIa-Pro, and NIb in SMV infection and multiplication. Furthermore, transgenic soybeans silenced for eIF4E were produced using an RNA interference approach. Through monitoring for viral symptoms and viral titers, robust and broad-spectrum resistance was confirmed against five SMV strains (SC3/7/15/18 and SMV-R), BCMV, and WMV in the transgenic plants. Our findings represent fresh insights for investigating the mechanism underlying eIF4E-mediated resistance in soybean and also suggest an effective alternative for breeding soybean with broad-spectrum viral resistance.  相似文献   

5.
6.
The inbred cucumber (Cucumis sativus L.) line TMG-1 is resistant to three potyviruses:zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). The genetics of resistance to WMV and the relationship of WMV resistance to ZYMV resistance were examined. TMG-1 was crossed with WI-2757, a susceptible inbred line. F1, F2 and backcross progeny populations were screened for resistance to WMV and/or ZYMV. Two independently assorting factors conferred resistance to WMV. One resistance was conferred by a single recessive gene from TMG-1 (wmv-2). The second resistance was conferred by an epistatic interaction between a second recessive gene from TMG-1 (wmv-3) and either a dominant gene from WI-2757 (Wmv-4) or a third recessive gene from TMG-1 (wmv-4) located 20–30 cM from wmv-3. The two resistances exhibited tissue-specific expression. Resistance conferred by wmv-2 was expressed in the cotyledons and throughout the plant. Resistance conferred by wmv-3 + Wmv-4 (or wmv-4) was expressed only in true leaves. The gene conferring resistance to ZYMV appeared to be the same as, or tightly linked to one of the WMV resistance genes, wmv-3.  相似文献   

7.
Seven strains of Soybean mosaic virus (SMV) and three independent resistance loci (Rsv1, Rsv3, and Rsv4) have been identified in soybean. The objective of this research was to pyramid Rsv1, Rsv3, and Rsv4 for SMV resistance using molecular markers. J05 carrying Rsv1 and Rsv3 and V94-5152 carrying Rsv4 were used as the donor parents for gene pyramiding. A series of F2:3, F3:4, and F4:5 lines derived from J05 × V94-5152 were developed for selecting individuals carrying all three genes. Eight PCR-based markers linked to the three SMV resistance genes were used for marker-assisted selection. Two SSR markers (Sat_154 and Satt510) and one gene-specific marker (Rsv1-f/r) were used for selecting plants containing Rsv1; Satt560 and Satt063 for Rsv3; and Satt266, AI856415, and AI856415-g for Rsv4. Five F4:5 lines were homozygous for all eight marker alleles and presumably carry all three SMV resistance genes that would potentially provide multiple and durable resistance to SMV.  相似文献   

8.
Yang  Xiangdong  Niu  Lu  Zhang  Wei  He  Hongli  Yang  Jing  Xing  Guojie  Guo  Dongquan  Zhao  Qianqian  Zhong  Xiaofang  Li  Haiyun  Li  Qiyun  Dong  Yingshan 《Transgenic research》2019,28(1):129-140

Viruses constitute a major constraint to soybean production worldwide and are responsible for significant yield losses every year. Although varying degrees of resistance to specific viral strains has been identified in some soybean genetic sources, the high rate of mutation in viral genomes and mixed infections of different viruses or strains under field conditions usually hinder the effective control of viral diseases. In the present study, we generated transgenic soybean lines constitutively expressing the double-strand RNA specific ribonuclease gene PAC1 from Schizosaccharomyces pombe to evaluate their resistance responses to multiple soybean-infecting virus strains and isolates. Resistance evaluation over three consecutive years showed that the transgenic lines displayed significantly lower levels of disease severity in field conditions when challenged with soybean mosaic virus (SMV) SC3, a prevalent SMV strain in soybean-growing regions of China, compared to the non-transformed (NT) plants. After inoculation with four additional SMV strains (SC7, SC15, SC18, and SMV-R), and three isolates of bean common mosaic virus (BCMV), watermelon mosaic virus (WMV), and bean pod mottle virus (BPMV), the transgenic plants exhibited less severe symptoms and enhanced resistance to virus infections relative to NT plants. Consistent with these results, the accumulation of each virus isolate was significantly inhibited in transgenic plants as confirmed by quantitative real-time PCR and double antibody sandwich enzyme-linked immunosorbent assays. Collectively, our results showed that overexpression of PAC1 can increase multiple virus resistance in transgenic soybean, and thus provide an efficient control strategy against RNA viruses such as SMV, BCMV, WMV, and BPMV.

  相似文献   

9.
Soybean mosaic virus (SMV) is one of the most devastating viral pathogens of soybean (Glycine max (L.) Merr). In total, 22 Chinese SMV strains (SC1–SC22) have been classified based on the responses of 10 soybean cultivars to these pathogens. However, although several SMV-resistance loci in soybean have been identified, no gene conferring SMV resistance in the resistant soybean cultivar (cv.) Kefeng No.1 has been cloned and verified. Here, using F2-derived F3 (F2:3) and recombinant inbred line (RIL) populations from a cross between Kefeng No.1 and susceptible soybean cv. Nannong 1138-2, we localized the gene in Kefeng No.1 that mediated resistance to SMV-SC3 strain to a 90-kb interval on chromosome 2. To study the functions of candidate genes in this interval, we performed Bean pod mottle virus (BPMV)-induced gene silencing (VIGS). We identified a recombinant gene (which we named RSC3K) harboring an internal deletion of a genomic DNA fragment partially flanking the LOC100526921 and LOC100812666 reference genes as the SMV-SC3 resistance gene. By shuffling genes between infectious SMV DNA clones based on the avirulent isolate SC3 and virulent isolate 1129, we determined that the viral protein P3 is the avirulence determinant mediating SMV-SC3 resistance on Kefeng No.1. P3 interacts with RNase proteins encoded by RSC3K, LOC100526921, and LOC100812666. The recombinant RSC3K conveys much higher anti-SMV activity than LOC100526921 and LOC100812666, although those two genes also encode proteins that inhibit SMV accumulation, as revealed by gene silencing in a susceptible cultivar and by overexpression in Nicotiana benthamiana. These findings demonstrate that RSC3K mediates the resistance of Kefeng No.1 to SMV-SC3 and that SMV resistance of soybean is determined by the antiviral activity of RNase proteins.  相似文献   

10.
 Sources of resistance to several potyviruses have been identified and characterized within the cucumber (Cucumis sativus L.) germplasm. Resistance to zucchini yellow mosaic virus (ZYMV) is present in inbred lines derived from the Dutch hybrid Dina (Dina-1) and from the Chinese cultivar ‘Taichung Mou Gua’ (TMG-1). Tests of allelism indicated that the genes for resistance to ZYMV in TMG-1 and Dina-1 are at the same locus; however, the two genotypes exhibited different phenotypes in response to cotyledon inoculation with ZYMV. Dina-1 exhibited a distinct veinal chlorosis and accumulation of virus limited to the first and/or second true leaves, while TMG-1 remained symptom-free and did not accumulate virus. The distinct veinal chlorosis phenotype in Dina-1 was dominant to the symptom-free phenotype in TMG-1 and was shown not to be due to a separate gene. These results indicate that a series of alleles differing in effectiveness and dominance relationships occurs at the zym locus such that Zym>zym Dina>zym TMG-1. In addition to ZYMV resistance, TMG-1 is also resistant to watermelon mosaic virus (WMV), the watermelon strain of papaya ringspot virus (PRSV-W) and the Moroccan watermelon mosaic virus (MWMV); the WMV and MWMV resistances are at the same locus, or tightly linked to the zym locus. Dina-1 also was found to be resistant to PRSV-W and MWMV. The gene for MWMV resistance in Dina-1 appeared to be at the same locus or tightly linked (<1% recombination) to the gene for ZYMV resistance. In contrast to the response to ZYMV inoculation, Dina-1 does not exhibit distinct veinal chlorosis when inoculated with PRSV-W or MWMV. Collectively, these observations suggest that the gene(s) conferring resistance to ZYMV, WMV, and MWMV may be part of a gene cluster for potyvirus resistance in cucumber. Received: 12 November 1996 / Accepted: 25 April 1997  相似文献   

11.
Soybean [Glycine max (L.) Merr.] PI486355 is resistant to all the identified strains of soybean mosaic virus (SMV) and possesses two independently inherited resistance genes. To characterize the two genes, PI486355 was crossed with the susceptible cultivars Lee 68 and Essex and with cultivars Ogden and Marshall, which are resistant to SMV-G1 but systemically necrotic to SMV-G7. The F2 populations and F23 progenies from these crosses were inoculated with SMV-G7 in the greenhouse. The two resistance genes were separated in two F34 lines, LR1 and LR2, derived from Essex x PI486355. F1 individuals from the crosses of LR1 and LR2 with Lee 68, Ogden, and York were tested with SMV-G7 in the greenhouse; the F2 populations were tested with SMV-G1 and G7. The results revealed that expression of the gene in LR1 is gene-dosage dependent, with the homozygotes conferring resistance but the heterozygotes showing systemic necrosis to SMV-G7. This gene was shown to be an allele of the Rsv1 locus and was designated as Rsv1-s. It is the only allele identified so far at the Rsv1 locus which confers resistance to SMV-G7. Rsv1-s also confers resistance to SMV-G1 through G4, but results in systemic necrosis with SMV-G5 and G6. The gene in LR2 confers resistance to strains SMV-G1 through G7 and exhibits complete dominance. It appears to be epistatic to genes at the Rsv1 locus, inhibiting the expression of the systemic necrosis conditioned by the Rsv1 alleles. SMV-G7 induced a pin-point necrotic reaction on the inoculated primary leaves in LR1 but not in LR2. The unique genetic features of the two resistance genes from PI486355 will facilitate their proper use and identification in breeding and contribute to a better understanding of the interaction of SMV strains with soybean resistance genes.  相似文献   

12.
Viral pathogens, such as soybean mosaic virus (SMV), are a major constraint in soybean production and often cause significant yield loss and quality deterioration. Engineering resistance by RNAi-mediated gene silencing is a powerful strategy for controlling viral diseases. In this study, a 248-bp inverted repeat of the replicase (nuclear inclusion b, NIb) gene was isolated from the SMV SC3 strain, driven by the leaf-specific rbcS2 promoter from Phaseolus vulgaris, and introduced into soybean. The transgenic lines had significantly lower average disease indices (ranging from 2.14 to 12.35) than did the non-transformed (NT) control plants in three consecutive generations, exhibiting a stable and significantly enhanced resistance to the SMV SC3 strain under field conditions. Furthermore, seed mottling did not occur in transgenic seeds, whereas the NT plants produced ~90% mottled seeds. Virus resistance spectrum screening showed that the greenhouse-grown transgenic lines exhibited robust resistance to five SMV strains (SC3, SC7, SC15, SC18, and a recombinant SMV), bean common mosaic virus, and watermelon mosaic virus. Nevertheless, no significantly enhanced resistance to bean pod mottle virus (BPMV, Comovirus) was observed in the transgenic lines relative to their NT counterparts. Consistent with the results of resistance evaluation, the accumulation of each potyvirid (but not of BPMV) was significantly inhibited in the transgenic plants relative to the NT controls as confirmed by quantitative real-time (qRT-PCR) and double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). These results demonstrate that robust RNAi-mediated resistance to multiple potyvirids in soybean was conferred by expressing an intron hairpin SMV NIb RNA.  相似文献   

13.
 We have investigated the interaction between two different potyviruses and resistant cultivars of Lactuca sativa. Turnip mosaic virus (TuMV) and lettuce mosaic virus (LMV) were used to inoculate several cultivars under different temperature regimes to characterize the resistance reaction. Resistance conferred by the recessive mo locus against LMV infection did not provide immunity. Virus accumulated in plant tissues to different levels depending on the genetic background of the cultivar, suggesting that several genes were involved in the resistance phenotype. Under temperature regimes that enhanced the hypersensitive reaction, resistant cultivars produced necrotic reactions. In contrast, resistance to TuMV infection conferred by the dominant Tu locus resulted in complete immunity in the plant. No virus accumulated in inoculated leaves nor was any necrotic reaction observed. The resistance loci were characterized at the genetic level by mapping them relative to molecular markers. Only weak linkages could be identified to mo, again supporting the hypothesis that several genes are involved. The Tu locus was mapped in two different crosses relative to several markers, the closest two linked at less than 1 cM. A high-resolution genetic map of the Tu locus was constructed by screening 500 F2 individuals for recombinants around that locus. Received: 4 June 1996/Accepted: 15 November 1996  相似文献   

14.
Genetic resistance to pathogens is important for sustainable maintenance of crop yields. Recent biotechnologies offer alternative approaches to generate resistant plants by compensating for the lack of natural resistance. Tomato (Solanum lycopersicum) and related species offer a model in which natural and TILLING‐induced potyvirus resistance alleles may be compared. For resistance based on translation initiation factor eIF4E1, we confirm that the natural allele Sh–eIF4E1PI24–pot1, isolated from the wild tomato species Solanum habrochaites, is associated with a wide spectrum of resistance to both potato virus Y and tobacco etch virus isolates. In contrast, a null allele of the same gene, isolated through a TILLING strategy in cultivated tomato S. lycopersicum, is associated with a much narrower resistance spectrum. Introgressing the null allele into S. habrochaites did not extend its resistance spectrum, indicating that the genetic background is not responsible for the broad resistance. Instead, the different types of eIF4E1 mutations affect the levels of eIF4E2 differently, suggesting that eIF4E2 is also involved in potyvirus resistance. Indeed, combining two null mutations affecting eIF4E1 and eIF4E2 re‐establishes a wide resistance spectrum in cultivated tomato, but to the detriment of plant development. These results highlight redundancy effects within the eIF4E gene family, where regulation of expression alters susceptibility or resistance to potyviruses. For crop improvement, using loss‐of‐function alleles to generate resistance may be counter‐productive if they narrow the resistance spectrum and limit growth. It may be more effective to use alleles encoding functional variants similar to those found in natural diversity.  相似文献   

15.
Rhizomania is a serious disease of sugar beet, caused by beet necrotic yellow vein virus (BNYVV). The disease can only be controlled by the use of resistant cultivars. The accession Holly contains a single dominant gene for resistance, called Rz. The identification of a locus for resistance that differs from Rz would provide possibilities to produce cultivars with multiple resistance to BNYVV. Inheritance of resistance to BNYVV was studied by screening progenies of crosses between resistant plants of the accessions Beta vulgaris subsp. maritima WB42 and B. vulgaris subsp. vulgaris Holly-1–4 or R104. Observed and expected segregation ratios were compared to elucidate whether the resistance genes in the three accessions are alleles or situated on different loci. STS markers, linked to the genes for resistance, were used to study the segregation in more detail. The results demonstrated that the genes for resistance to BNYVV inHolly-1-4 and WB42 are closely linked. The gene for resistance in R104 is at the same locus as in Holly-1-4, and also closely linked to the gene in WB42. As the Holly resistance gene has been named Rz, the name Rz2 is proposed to refer to the resistance gene in WB42. Consequently, the gene Rz should be referred to as Rz1. Received: 29 October 1998 / Accepted: 12 March 1999  相似文献   

16.
Cowpea plays a key nutritional role in the diet of the Nigerian people. Viral diseases are a major limitation to cowpea production worldwide, and thus, constant viral surveillance is crucial for monitoring and management purposes. In this study, cowpea leaf samples from fields in three northern Nigeria states, Kano, Kaduna and Niger, were tested to determine the status of six common viruses previously reported in these cowpea-producing states following the release of virus-resistant varieties. Cowpea aphid-borne mosaic virus (CABMV), Blackeye cowpea mosaic virus (BICMV), Cowpea mottle virus, Southern bean mosaic virus and Cucumber mosaic virus (CMV) were detected. Cowpea yellow mosaic virus, which was previously reported in all three states, was not detected in any of the samples tested, while CMV that was previously regarded as unimportant to cowpea production in Nigeria had the highest incidence in all three states, and the overall highest incidence of 58.8%, while CABMV had the lowest incidence (7.5%). CMV was also present in seven of the ten mixed infection combinations detected. Dual infection of CMV and BICMV, which often results in cowpea stunt, the most devastating cowpea disease in the USA, was the most frequently detected mixed infection (28.1%) and was detected in all three states. This observed elevation in CMV infection in cowpea must be closely monitored and swiftly managed to avert possible devastating crop yield losses.  相似文献   

17.
Cowpea aphid‐borne mosaic virus (CABMV) causes major diseases in cowpea and passion flower plants in Brazil and also in other countries. CABMV has also been isolated from leguminous species including, Cassia hoffmannseggii, Canavalia rosea, Crotalaria juncea and Arachis hypogaea in Brazil. The virus seems to be adapted to two distinct families, the Passifloraceae and Fabaceae. Aiming to identify CABMV and elucidate a possible host adaptation of this virus species, isolates from cowpea, passion flower and C. hoffmannseggii collected in the states of Pernambuco and Rio Grande do Norte were analysed by sequencing the complete coat protein genes. A phylogenetic tree was constructed based on the obtained sequences and those available in public databases. Major Brazilian isolates from passion flower, independently of the geographical distances among them, were grouped in three different clusters. The possible host adaptation was also observed in fabaceous‐infecting CABMV Brazilian isolates. These host adaptations possibly occurred independently within Brazil, so all these clusters belong to a bigger Brazilian cluster. Nevertheless, African passion flower or cowpea‐infecting isolates formed totally different clusters. These results showed that host adaptation could be one factor for CABMV evolution, although geographical isolation is a stronger factor.  相似文献   

18.
19.
 A Chinese landrace of barley, Mokusekko 3, is unique in being completely resistant against all strains of barley yellow mosaic virus (BaYMV). The present investigation revealed that the resistance of Mokusekko 3 is governed by two recessive genes. As one of the resistance genes was known to be tightly linked with alleles at the Est complex locus, consisting of the Est1, Est2 and Est4 loci for esterase isozymes, each of the resistance genes could be separated by means of marker-assisted selection using an isozyme allelic combination as a marker. One of the resistance genes, ym1, is linked to K (hooded lemma) and gl3 (glossy leaf 3) with recombination values of 25.3% and 9.7% respectively, and these three genes are located in the order K-gl3-ym1 on chromosome 4. Another newly designated resistance gene, ym5, is linked to alleles at the Est complex locus and cu2 (curly growth 2), with recombination values of 1.9% and 19.5% respectively, in the order cu2-Est-ym5 from proximal to distal on the long arm of chromosome 3. The complete resistance of Mokusekko 3 is caused by combining two resistance genes, ym1 and ym5. However, almost all the “resistant” cultivars derived from crosses with Mokusekko 3 are susceptible to the recently detected strain BaYMV-III in Japan, since they contain only one resistance gene, ym5. Marker-assisted selection to combine resistance genes into a cultivar is discussed for the breeding of stabilizing resistance to BaYMV. Received: 23 September 1996 / Accepted: 8 November 1996  相似文献   

20.
Four cultivars of cowpea (Vigna unguiculata [L]. Walp.) were infected with cowpea aphid-borne mosaic virus (CABMV) by natural infection in field plots. Seeds taken from these plants were tested for the presence of the virus by ELISA and symptom observation on the plantlets grown from the seeds. A biotin/ streptavidin ELISA technique was used and found to be more sensitive than a standard ELISA protocol for detecting CABMV infection in seed. There was a good correlation between the ELISA detection of CABMV in tissue taken from single cowpea seeds and subsequent development of infected plants grown from the same seeds. The ELISA technique is reliable for selecting CABMV-free stocks of cowpea seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号