首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taurine and Its Chloramine: Modulators of Immunity   总被引:11,自引:0,他引:11  
Taurine is a semiessential amino acid that is not incorporated into proteins. In mammalian tissues, taurine is ubiquitous and is the most abundant free amino acid in the heart, retina, skeletal muscle, and leukocytes. Taurine reaches up to 50 mM concentration in leukocytes. Taurine has been shown to be tissue-protective in many models of oxidant-induced injury. One possibility is that taurine reacts with HOCl, produced by the myeloperoxidase (MPO) pathway, to produce the more stable but less toxic taurine chloramine (Tau-Cl). However, data from several laboratories demonstrate that Tau-Cl is a powerful regulator of the immune system. Specifically, Tau-Cl has been shown to downregulate the production of proinflammatory mediators in both rodent and human leukocytes. Recent molecular studies on the function of taurine provide evidence that taurine is a constituent of biological macromolecules. Specifically, two novel taurine-containing modified uridines have been found in both human and bovine mitrochondria. In studies on mechanism of action, Tau-Cl inhibits the activation of NFkappaB, a potent signal transducer for inflammatory cytokines, by oxidation of IkappaB alpha at methionine45. Taurine transporter knockout mice show reduced taurine, reduced fertility, and loss of vision resulting from severe retinal degeneration, which was found to be due to apoptosis. Apoptosis induced by amino chloramines is a current and important finding because oxidants derived from leukocytes play a key role in killing pathogens. The fundamental importance of taurine in adaptive and acquired immunity will be revealed using genetic manipulation.  相似文献   

2.
The stimulatory effect of cysteine sulfinic acid on cyclic AMP formation was examined in slices from three different regions of guinea pig brain. The inhibitory effect of taurine on the stimulated formation of cyclic AMP was also studied. Cysteine sulfinic acid (1--10 mM) greatly increased the cyclic AMP level in striatal, cortical, and especially hippocampal slices. In hippocampal slices, taurine (0.1--30 mM) markedly lowered the increase of cyclic AMP induced by cysteine sulfinic acid, but not that induced by glutamate or aspartate. In this region, taurine also reduced the stimulatory effects on cyclic AMP formation of adenosine, norepinephrine, and histamine, but not of depolarizing agents. It did not, however, inhibit the effects of any of these stimulants in cortical slices. These results suggest that sulfur-containing amino acids, such as cysteine sulfinic acid and taurine, regulate the cyclic AMP level in the hippocampus.  相似文献   

3.
Abstract: Taurine, cysteinesulfinic acid decarboxylase (CSAD), glutamate, γ-aminobutyric acid (GABA), and glutamic acid decarboxylase (GAD) were measured in subcellular fractions prepared from occipital lobe of fetal and neonatal rhesus monkeys. In addition, the distribution of [35S]taurine in subcellular fractions was determined after administration to the fetus via the mother, to the neonate via administration to the mother prior to birth, and directly to the neonate at various times after birth. CSAD, glutamate, GABA, and GAD all were found to be low or unmeasurable in early fetal life and to increase during late fetal and early neonatal life to reach values found in the mother. Taurine was present in large amounts in early fetal life and decreased slowly during neonatal life, arriving at amounts found in the mother not until after 150 days of age. Significant amounts of taurine, CSAD, GABA, and GAD were associated with nerve ending components with some indication that the proportion of brain taurine found in these organelles increases during development. All subcellular pools of taurine were rapidly labeled by exogenously administered [35S]taurine. The subcellular distribution of all the components measured was compatible with the neurotransmitter or putative neuro-transmitter functions of glutamate, GABA, and taurine. The large amount of these three amino acids exceeds that required for such function. The excess of glutamate and GABA may be used as a source of energy. The function of the excess of taurine is still not clear, although circumstantial evidence favors an important role in the development and maturation of the CNS.  相似文献   

4.
In this paper, we report for the first time on the identification, purification, and characterization of the alpha-ketoisovalerate decarboxylase from Lactococcus lactis, a novel enzyme responsible for the decarboxylation into aldehydes of alpha-keto acids derived from amino acid transamination. The kivd gene consisted of a 1647 bp open reading frame encoding a putative peptide of 61 kDa. Analysis of the deduced amino acid sequence indicated that the enzyme is a non-oxidative thiamin diphosphate (ThDP)-dependent alpha-keto acid decarboxylase included in the pyruvate decarboxylase group of enzymes. The active enzyme is a homo-tetramer that showed optimum activity at 45 degrees C and at pH 6.5 and exhibited an inhibition pattern typical for metal-dependant enzymes. In addition to Mg(2+), activity was observed in presence of other divalent cations such as Ca(2+), Co(2+) and Mn(2+). The enzyme showed the highest specific activity (80.7 Umg(-1)) for alpha-ketoisovalerate, an intermediate metabolite in valine and leucine biosynthesis. On the other side, decarboxylation of indole-3-pyruvate and pyruvate only could be detected by a 100-fold increase in the enzyme concentration present in the reaction.  相似文献   

5.
Cysteine sulfinate decarboxylase (CSD), the putative biosynthetic enzyme for taurine, has been shown to exist in two forms in rat brain, respectively CSDI and CSDII, one of which (CSDII) is considered to be in fact glutamate decarboxylase (GAD). CSDI assay after immunotrapping was made possible by using an anti-CSD antiserum raised in sheep immunized with a partially purified CSD fraction from liver. This antiserum immunoprecipitated both liver CSD and brain CSDI activities with the same affinity but did not inhibit their enzymatic activities. The immunotrapping of CSDI was selective without any contamination by GAD/CSDII activity. The immunotrapped CSD activity, which corresponded exactly to the amount of CSD not precipitated by a GAD/CSDII antiserum, was not inhibited by a specific irreversible GAD inhibitor. A quantitative, selective and sensitive assay was thus developed by measuring CSD activity on the solid phase after immunotrapping. Kinetic parameters of the immunotrapped enzyme remained unchanged. CSDI activity represented only a fraction, around 20% with saturating concentration of substrate, of the total CSD activity in rat brain homogenate. This indicates that most studies on total CSD activity dealt essentially with CSDII activity that is indeed GAD. Regional and subcellular distributions of CSDI have been determined. CSDI activity was about threefold higher in the richest (cerebellum) compared to the poorest (striatum) region without any correlation with GAD/CSDII distribution. Subcellular distribution showed a fourfold enrichment of CSDI activity in the synaptosomal fraction. The precise role of CSDI and CSDII in the biosynthesis of taurine in vivo remains to be elucidated.  相似文献   

6.
Abstract The effects of several inhibitors of lipoxygenases were investigated in murine spleen cell cultures activated with endotoxin (lipopolysaccharide) It was found that these inhibitors interfere with the proliferative response of the cultures. Indomethacin, a specific cyclooxygenase inhibitor, had no such effect. Endotoxin induced the synthesis of tumour necrosis factor α in spleen cells which was prevented by treatment with a lipoxygenase inhibitor. The inhibition of the mitogenic effect of endotoxin could be reversed by addition of 13-hydroxyoctadecadienoic acid. This was not the case with leukotriene B4 and C4 or 15-hydroxyeicosatetraenoic acid. In contrast, these substances had inhibitory effects on the mitogenicity of spleen cells. It is suggested that 13-hydroxyoctadecadienoic acid is involved in the development of the mitogenic reaction, possibly on the level of tumour necrosis factor α production of macrophages present in the cultures.  相似文献   

7.
The transport kinetics of gamma-aminobutyric acid (GABA), taurine, and beta-alanine in addition to the mutual inhibition patterns of these compounds were investigated in cultures of neurons and astrocytes derived from mouse cerebral cortex. A high-affinity uptake system for each amino acid was demonstrated both in neurons (Km GABA = 24.9 +/- 1.7 microM; Km Tau = 20.0 +/- 3.3 microM; Km beta-Ala = 73.0 +/- 3.6 microM) and astrocytes (Km GABA = 31.4 +/- 2.9 microM, Km Tau = 24.7 +/- 1.3 microM; Km beta-Ala = 70.8 +/- 3.6 microM). The maximal uptake rates (Vmax) determined were such that, in neurons, Vmax GABA greater than Vmax beta-Ala = Vmax Tau, whereas in astrocytes, Vmax beta-Ala greater than Vmax Tau = Vmax GABA. Taurine was found to inhibit beta-alanine uptake into neurons and astrocytes in a competitive manner, with Ki values of 217 microM in neurons and 24 microM in astrocytes. beta-Alanine was shown to inhibit taurine uptake in neurons and astrocytes, also in a competitive manner, with Ki values of 72 microM in neurons and 71 microM in astrocytes. However, beta-alanine was found to be a weak noncompetitive inhibitor of neuronal and astrocytic GABA uptake, whereas in reverse experiments, GABA displayed weak noncompetitive inhibition of neuronal and astrocytic uptake of beta-alanine. Likewise, taurine was a weak noncompetitive inhibitor of GABA uptake in neurons and similarly, GABA was a weak noncompetitive inhibitor of taurine uptake into neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Abstract: Tumor necrosis factor-a (TNF-α), interferon-γ (IFN-7), and interleukin-6 (IL-6), but not TNF-β, can induce the in vitro differentiation of the neuroblastoma cell line N103 in a dose-dependent manner. Differentiation of N103 was accompanied by the arrest of cell growth and neurite formation. The induction of neuroblastoma cell differentiation by TNF-α and IFN-γ can be specifically inhibited by a nitric oxide (NO) synthase inhibitor, l -NG-monomethylarginine. In contrast, the differentiation of N103 cells by IL-6 was not affected by l -NG-monomethylarginine. These results indicate that TNF-α and IFN-γ, but not IL-6, induce the differentiation of neuroblastoma cells via NO. This is confirmed by the finding that the culture super- natants of N103 cells induced by TNF-α and IFN-γ, but not that by IL-6, contained high levels of NO2, the production of which was inhibited by l - N G-monomethylarginine. Furthermore, the differentiation of N103 cells can be induced directly in a dose-dependent manner by the addition of nitroprusside, a generator of NO, into the culture medium. These data therefore indicate that NO may be an important mediator in the induction of neuronal cell differentiation by certain cytokines such as TNF-α and IFN-γ and that neuronal cells, in addition to the macrophagelike brain cells, can be induced by immunological stimuli to produce large quantities of NO.  相似文献   

9.
Phytanic acid (3,7,10,14-tetramethylhexadecanoic acid) is a branched-chain fatty acid which is known to accumulate in a number of different genetic diseases including Refsum disease. Due to the presence of a methyl-group at the 3-position, phytanic acid and other 3-methyl fatty acids can not undergo β-oxidation but are first subjected to fatty acid α-oxidation in which the terminal carboxyl-group is released as CO2. The mechanism of α-oxidation has long remained obscure but has been resolved in recent years. Furthermore, peroxisomes have been found to play an indispensable role in fatty acid α-oxidation, and the complete α-oxidation machinery is probably localized in peroxisomes. This Review describes the current state of knowledge about fatty acid α-oxidation in mammals with particular emphasis on the mechanism involved and the enzymology of the pathway.  相似文献   

10.
The (lyso)phospholipid mediators sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC), and phosphatidic acid (PA) regulate diverse cellular responses such as proliferation, survival and death, cytoskeletal rearrangements, cell motility, and differentiation among many others. Signaling is complex and many signaling events are mediated through the activation of cell surface seven transmembrane (7TM) G protein coupled receptors. Five high affinity receptors for S1P have been identified so far and named S1P(1, 2,3,4,5) (formerly referred to as endothelial differentiation gene (edg)1, 5, 3, 6, 8). Recently, the orphan receptor GPR63 was identified a low affinity S1P receptor structurally distant from the S1P(1-5) family. The orphan GPR3, 6, 12 cluster, phylogenetically related to the edg and melanocortin receptors appears to be subject to modulation by S1P and SPC although all three receptors are strong constitutive stimulators of the Galphas-adenylyl cyclase (AC) pathway and would not require additional ligand stimulation but rather inverse agonism to control activity. Ovarian cancer G protein coupled receptor 1 (OGR1) and GPR4, two structurally closely related receptors were assigned in functional and binding studies as high affinity molecular targets for SPC. Very recently, however, both OGR1 and GPR4 were described as receptors endowed with the ability to signal cells in response to protons. LPA exerts its biological effects through the activation of G protein coupled LPA(1-3) receptors (formerly referred to as edg2, 4, 7). A fourth high affinity LPA receptor has been identified: P2Y9 (GPR23) structurally related to nucleotide receptors and phylogenetically quite distant from the high affinity LPA(1-3) cluster. This review attempts to give an overview about the existing families of lysophosholipid receptors and the spectrum of lipid agonists they use as high or low affinity ligands to relay extracellular signals into intracellular responses. Recently deorphaned lipid receptors, within and outside the known lipid receptor clusters will receive particular attention.  相似文献   

11.
12.
Susceptibility to drug toxicity is influenced by a variety of factors, both genetic and environmental. The focus of this article is the evidence addressing the hypothesis that inflammation is both a result of and a susceptibility factor for drug toxicity, with an emphasis on liver as a target organ. Results of studies suggesting a role for inflammatory mediators in the hepatotoxicity caused by acetaminophen or ethanol are discussed. For several drugs, the evidence from animal models that concurrent inflammation increases injury is presented. In addition, the occurrence of adverse drug reactions in people with preexisting inflammatory diseases is considered. The special case of idiosyncratic drug reactions is discussed and the potential raised for development of animal models for this type of drug toxicity. The conclusion is that inflammatory factors should be considered as determinants of sensitivity to adverse drug reactions.  相似文献   

13.
Retinoic acid (RA) has been shown to induce human neuroblastoma SKNBE cell differentiation into a neuronal phenotype. Whether this neuronal differentiation is associated with modulation of matrix gelatinase [matrix metalloproteinase (MMP)-2 and MMP-9] expression was investigated in SKNBE cell cultures exposed to RA for 14 days. Their differentiation into a neuronal phenotype was typified by neural cell adhesion molecule and growth-associated protein-43 expression. Gelatinase expression was assessed by gel zymography, quantitative RT-PCR, and immunocytochemistry. Neuronal markers were located in neurites and ganglion-like clusters of neuronal cells induced upon RA exposure. MMP-2 expression was constitutive and remained unchanged at both the mRNA and protein levels in response to RA, tumor necrosis factor-alpha (TNFalpha), or phorbol 12-myristate 13-acetate (PMA) treatment. In contrast, MMP-9 was inducible by RA, TNFalpha, or PMA. MMP-9 was progressively enhanced by RA as a function of time exposure until day 14. The addition of TNFalpha or PMA potentiated RA-induced MMP-9 expression with a synergic maximal effect at day 14 of RA exposure. Immunoreactive MMP-9 was located early in outgrowing neurites, but only at day 14 of RA exposure in extensive neuritic networks. Taken together, the correlation between the MMP-9 expression by SKNBE cells and the time scale of their differentiation into a neuronal phenotype allowed us to propose that MMP-9 could participate in the neurite growth process and cell migration and organization into ganglion-like clusters.  相似文献   

14.
A statistical approach was applied to select those models that best fit each individual mitochondrial (mt) protein at different taxonomic levels of metazoans. The existing mitochondrial replacement matrices, MtREV and MtMam, were found to be the best-fit models for the mt-proteins of vertebrates, with the exception of Nd6, at different taxonomic levels. Remarkably, existing mitochondrial matrices generally failed to best-fit invertebrate mt-proteins. In an attempt to better model the evolution of invertebrate mt-proteins, a new replacement matrix, named MtArt, was constructed based on arthropod mt-proteomes. The new model was found to best fit almost all analyzed invertebrate mt-protein data sets. The observed pattern of model fit across the different data sets indicates that no single replacement matrix is able to describe the general evolutionary properties of mt-proteins but rather that taxonomical biases and/or the existence of different mt-genetic codes have great influence on which model is selected.  相似文献   

15.
Abstract: A radiometric assay for ornithine aminotransferase was developed using [1-14C]α-ketoglutarate as the labeled substrate and glutamate decarboxylation as a linking step. This assay gives near total measurement of ornithine aminotransferase activities that are, respectively, about 1.5 and 10 times larger than those obtained by the spectrophotometric assay and the radiometric assay using [1-14C]ornithine. It is also the most sensitive of the three assay procedures.
Consistent with previous reports, brain ornithine aminotransferase was found to be present predominantly in synaptosomes. Regional distribution of the enzyme correlated with that of the high-affinity uptake of glutamate, but not with the distribution of glutamate decarboxylase. Ornithine aminotransferase may be responsible for the synthesis of glutamate in glutamatergic neurons but it is clearly not localized exclusively in such neurons.  相似文献   

16.
In this paper, we report the identification of genes from pine (PpAAT), Arabidopsis (AtAAT) and rice (OsAAT) encoding a novel class of aspartate aminotransferase (AAT, EC 2.6.1.1) in plants. The enzyme is unrelated to other eukaryotic AATs from plants and animals but similar to bacterial enzymes. Phylogenetic analysis indicates that this prokaryotic-type AAT is closely related to cyanobacterial enzymes, suggesting it might have an endosymbiotic origin. Interestingly, most of the essential residues involved in the interaction with the substrate and the attachment of pyridoxal phosphate cofactor in the active site of the enzyme were conserved in the deduced polypeptide. The polypeptide is processed in planta to a mature subunit of 45 kDa that is immunologically distinct from the cytosolic, mitochondrial and chloroplastic isoforms of AAT previously characterized in plants. Functional expression of PpAAT sequences in Escherichia coli showed that the processed precursor is assembled into a catalytically active homodimeric holoenzyme that is strictly specific for aspartate. These atypical genes are predominantly expressed in green tissues of pine, Arabidopsis and rice, suggesting a key role of this AAT in nitrogen metabolism associated with photosynthetic activity. Moreover, immunological analyses revealed that the plant prokaryotic-type AAT is a nuclear-encoded chloroplast protein. This implies that two plastidic AAT co-exist in plants: a eukaryotic type previously characterized and the prokaryotic type described here. The respective roles of these two enzymes in plant amino acid metabolism are discussed.  相似文献   

17.
The intracellular concentration of free leucine, isoleucine, and valine and their metabolism were studied in lymphoblast cultures established from peripheral blood of an individual with maple syrup urine disease (MSUD) and a control subject. Branched-chain -keto acid decarboxylase activity in the MSUD cells was 10% or less of the control value as measured by the ability of the cells to release 14CO2 from the corresponding [1-14C]labeled branched-chain amino acid. The intracellular concentrations of free leucine and isoleucine were increased three-fold in MSUD lymphoblasts as compared to control cells. Free valine was present in only trace amounts of less than 0.1 mMin both cell lines. Exposure of normal and mutant cells to a 10 mMload of leucine, isoleucine, and valine resulted in a comparable concentration within cells after 24 hr. Concentrations returned to base values in normal cells 12 hr after removal of load, but leucine remained elevated in MSUD cells after 3 days. Leucine and its keto acid, -ketoisocaproic acid, added to the culture medium gave significant growth inhibition of MSUD lymphoblasts but not of normal cells, in the millimolar range. Isoleucine, valine, and their keto acids had no effect.This investigation was supported in part by Grants AM-13622, AM-05646, and GM-17702 from the United States Public Health Service, Veterans Administration Grant M.R.I.S. No. 3181 to Dr. Nathan Gochman, and grants from the National Foundation and the Kroc Foundation. S. D. S. is a Postdoctoral Research Fellow supported by United States Public Health Service Training Grant AM-05646.  相似文献   

18.
The appropriate regulation of intracellular calcium is a requirement for proper cell function and survival. This review focuses on the effects of proinflammatory cytokines on calcium regulation in the insulin-producing pancreatic beta-cell and how normal stimulus-secretion coupling, organelle function, and overall beta-cell viability are impacted. Proinflammatory cytokines are increasingly thought to contribute to beta-cell dysfunction not only in type 1 diabetes (T1D), but also in the progression of type 2 diabetes (T2D). Cytokine-induced disruptions in calcium handling result in reduced insulin release in response to glucose stimulation. Cytokines can alter intracellular calcium levels by depleting calcium from the endoplasmic reticulum (ER) and by increasing calcium influx from the extracellular space. Depleting ER calcium leads to protein misfolding and activation of the ER stress response. Disrupting intracellular calcium may also affect organelles, including the mitochondria and the nucleus. As a chronic condition, cytokine-induced calcium disruptions may lead to beta-cell death in T1D and T2D, although possible protective effects are also discussed. Calcium is thus central to both normal and pathological cell processes. Because the tight regulation of intracellular calcium is crucial to homeostasis, measuring the dynamics of calcium may serve as a good indicator of overall beta-cell function.  相似文献   

19.
Abstract: The conversion of lignoceric acid to cerebronic acid, ceramides, cerebrosides, and glutamic acid is catalyzed by a rat brain particulate preparation. The heat-stable factor, prepared from calf cerebellum, together with the heat-labile factor, a pyridine nucleotide, and Mg2+ are essential to all of these metabolic pathways. Our previous work showed that the heat-stable factor is composed of at least two components, HSF-1 and HSF-2, and identified HSF-2 as d -glucose-6-phosphate. In the current investigation, HSF-1 was further purified and found to be N -acetyl- l -aspartic acid. In addition, it was discovered that a third component, HSF-3, is also required for heat-stable factor activity. A reconstituted system composed of N -acetylaspartic acid, glucose-6-phosphate, and HSF-3 fully replaced the heat-stable factor essential for the conversion of lignoceric acid to cerebronic acid and glutamic acid. The reconstituted heat-stable factor did not show the initial time lag always observed with the crude heat-stable factor.  相似文献   

20.
Interleukin (IL)-1 and tumor necrotic factor alpha (TNFalpha) are pivotal in the pathogenesis of endotoxemia. In spite of the in vitro finding that IL-1beta, but not TNFalpha, can induce iNOS mRNA and NO production as a single stimulus in hepatocytes in primary culture, the involvement of IL-1 in iNOS induction in the liver has been less clear in vivo. To address this, we challenged IL-1alpha/beta double-knockout (IL-1alpha/beta(-/-)) and TNFalpha(-/-) mice with lipopolysaccharide (LPS). As compared with wild-type mice, the increases in the plasma NO level measured as nitrite and nitrate and hepatic iNOS were significantly reduced in IL-1alpha/beta(-/-) and TNFalpha(-/-) mice 8 and 12h after the LPS challenge. In the wild-type mice, iNOS protein was first detected in Kupffer cells around the portal vein 2h after LPS challenge; and then it spread to hepatocytes throughout the intralobular region of the liver by 8h. Although the expression of iNOS protein was detected in Kupffer cells of both IL-1alpha/beta(-/-) and TNFalpha(-/-) mice, its level was moderate in hepatocytes of IL-1alpha/beta(-/-) mice, but negligible in those of TNFalpha(-/-) mice, 8h after LPS challenge. Concomitant with the expression of iNOS protein in the liver, Toll-like receptor 4, the signaling receptor for LPS, was expressed in hepatocytes of wild-type and IL-1alpha/beta(-/-) mice, but not of TNFalpha(-/-) mice. These results demonstrate that the expression of Toll-like receptor 4 is well correlated with that of iNOS protein in hepatocytes in vivo after LPS challenge and that IL-1 is not essential for the induction of iNOS in hepatocytes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号