首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O-dealkylation of 7-pentoxyresorufin (PR) was studied in rat brain to characterise the functional activity specific for cytochrome P450 2B1/2B2 isoenzymes in brain microsomes. Brain microsomes catalyzed the O-dealkylation of PR in the presence of NADPH. Pretreatment with phenobarbital (PB; 80 mg/kg body wt, i.p.× 5 days) resulted in 3-4 fold induction of pentoxyresorufin-O-dealkylase (PROD) activity while 3-methylcholanthrene (MC; 30 mg/kg body wt, i.p. × 5 days) did not produce any significant increase in enzyme activity. Kinetic studies revealed that the rate of velocity (Vmax) for the O-dealkylation of PR was significantly increased to 2.9 times higher in brain microsomes isolated from PB pretreated rats. In vitro studies using metyrapone, an inhibitor of P450 2B1/2B2 catalyzed reactions and antibody for hepatic PB inducible P450s (P450 2B1/2B2) significantly inhibited the activity of PROD in cerebral microsomes prepared from PB pretreated animals. These studies suggest that PB inducible isoenzymes of P450, i.e. P450 2B1/2B2 specifically catalyze the O-dealkylation of PR in brain microsomes.  相似文献   

2.
Six substituted alkoxyphenoxazones (resorufins) and four inhibitors of P450‐dependent mixed‐function oxygenases (MFO) were used to probe the breadth and extent of P450 metabolism induced by pretreatment with five xenobiotic chemicals in liver microsomes of the American alligator, Alligator mississippiensis. Phenobarbital (PB), 3‐methylcholanthrene (3MC), and PB–3MC co‐pretreatment elicited major induction of alligator MFO activity measured by alkoxyresorufin O‐dealkylation (AROD). The induced levels of activities observed with appropriate substrate, 7‐ethoxy, 7‐methoxy, 2‐phenylbenzyloxy, 7‐pentoxy, or 7‐benzyloxyresorufin (EROD, MROD, PBROD, PROD and BROD, respectively), were 10 to 100 times lower in alligator as compared to rat. The exception was a higher level of isopropoxyresorufin O‐dealkylation (IPROD) in alligator. The induction regimes used in alligator and rat revealed marked differences in substrate preference, discrimination factors (DF) for various inducible P450 isoforms. EROD, a classic indicator of CYP1A activity in rat, had a low DF in alligator. MROD was the best discriminator in alligator of CYP1A‐type induction. In contrast to rats, pretreatment of alligators with Aroclor 1254, 2,2′,4,4′ tetrachlorobiphenyl, and clofibrate caused minor alterations in AROD relative to untreated controls. The inhibitors, α‐napthaflavone, 1‐ethynylpyrene, SKF 525A, and 9‐ethynylphenanthrene, inhibited AROD activity of the expected P450 isoform. For example, 10 μM α‐napthaflavone inhibited liver microsomal EROD catalyzed by 3MC‐inducible isoforms from alligator by 90% and from rat by 97%. Similarly, 10 μM SKF 525A inhibited PROD catalyzed by PB‐inducible isoforms by 63% and 79% in alligator and rat liver microsomes, respectively. To the best of our knowledge, the present studies are the first to show PB induction of P450 activities typical of the mammalian CYP2 family and their inhibition with classical inhibitors in alligator liver. While our data indicate metabolism of P450 substrates with preferences to certain isoforms, it remains to be established which isoforms exert catalytic function in alligator and whether these are homologues or orthologues of mammalian isoforms. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 17–27, 1999  相似文献   

3.
The present study aimed to evaluate some cytochrome P450 metabolic enzyme activities in hepatic microsomes prepared from entire male pigs (uncastrated pigs), surgically castrated pigs and pigs immunized against gonadotropin-releasing hormone (immunocastrated pigs). The activities of the following enzymes were measured: ethoxyresorufin O-deethylase (EROD, CYP1A1/1A2), methoxyresorufin O-deethylase (MROD, CYP1A2), pentoxyresorufin O-depentylase (PROD, CYP2B), coumarin hydroxylase (COH, CYP2A) and p-nitrophenol hydroxylase (PNPH, CYP2A/2E1). The total cytochrome P450 contents were not affected by either surgical or immunocastration. Hepatic microsomal activities for EROD, PROD, COH and PNPH were lower in entire male pigs compared with surgically castrated and immunocastrated pigs (P < 0.05). Surgically and immunocastrated male pigs were similar with respect to EROD, MROD, PROD and COH activities (P > 0.05), whereas surgically castrated pigs exhibited lower PNPH activity compared with immunocastrated pigs (P = 0.029). The effect of different concentrations of testicular steroids - testosterone, 17β-estradiol, free estrone and androstenone - on enzyme activities was evaluated by in vitro microsomal study. Testosterone at the concentration of 8 pmol/ml inhibited EROD activities and estradiol-17β at the concentration of 1.8 pmol/ml inhibited PROD activities in hepatic microsomes from surgically castrated pigs. The highest concentration of androstenone (7520 pmol/ml) inhibited COH activities, whereas a 42-fold lower concentration of androstenone (180 pmol/ml) stimulated COH activities in surgically castrated pigs. Both free estrone (3.5 pmol/ml) and androstenone (55 pmol/ml) inhibited EROD activities in microsomes from entire male pigs. Stimulation of COH activities by the highest dose of free estrone (18 pmol/ml) was recorded in microsomes from entire male pigs. However, these effects of steroids were not concentration-dependent and the maximum extent did not exceed ±15% variation compared with the controls. There was no inhibition of PNPH activities in the hepatic microsomes from either entire or castrated pigs. In conclusion, we showed that EROD, PROD, COH and PNPH activities were lower in entire male pigs compared with those in surgically and immunocastrated pigs. Direct inhibition by the testicular steroids - testosterone, 17β-estradiol, free estrone and androstenone - was not the primary cause of the reduced enzyme activities.  相似文献   

4.
In this study, the first fluorescent assay for bacterial cytochrome P450 BM3 (BM3) and mutants is described. BM3 mutants are potentially very versatile biocatalysts for the production of fine chemicals. A fluorescent assay would be very useful for the identification of nonnatural ligands in high-throughput inhibition assays. Because of the ease and sensitivity of alkoxyresorufin O-dealkylation assays, four different alkoxyresorufins were evaluated as substrates. Wild-type BM3 showed extremely low activity toward all four alkoxyresorufins tested. Five different BM3 mutants were constructed, carrying different combinations of mutations R47L, F87V, and L188Q, which were previously shown to increase activity toward nonnatural substrates. For all mutants, a high benzyloxyresorufin O-dealkylation (BROD) activity was found. The triple mutant of BM3, R47L/F87V/L188Q, showed the highest activity, increasing 900-fold compared to wild-type BM3. The BROD assay could also be applied in whole Escherichia coli cells; permeabilization by lipopolysaccharide deficiency strongly increased activity. To demonstrate the applicability of the BROD assay to screening for novel ligands of BM3 R47L/F87V/L188Q, a library of 45 drug-like compounds was tested for inhibition. Of these compounds, 8 showed strong inhibition of the BROD activity, demonstrating for the first time that drug-like molecules also can bind with high affinity to BM3 mutants.  相似文献   

5.
The Chronic Administration of Nicotine Induces Cytochrome P450 in Rat Brain   总被引:2,自引:0,他引:2  
Abstract: The objective of these studies was to determine whether chronic administration of nicotine altered the cytochrome P450 (P450) monooxygenase system in rat brain. Male Sprague-Dawley rats received injections of nicotine bitartrate (1.76 mg/kg, s.c, twice daily for 10 days), and total cytochrome P450 content, the activity of N ADPH-cytochrome c reductase, and the activities and relative abundance of P4502B1 and P4502B2 (P4502B1/2) were determined in microsomal fractions from rat brain. The content of P450 increased significantly (p < 0.02) in all brain regions examined from nicotine-injected rats: the largest increase (208% of control) was in frontal cortex and the smallest increase (122% of control) in cerebellum. The activity of NADPH-cytochrome c reductase was unaltered by nicotine administration. Benzyloxyresorufin O-dealkylase (BROD) and pentoxyresorufin O-dealkylase (PROD) activities, mediated by P4502B1/2, increased significantly (p < 0.02) following nicotine administration; the largest increase (213-227% of control) was in frontal cortex. Western blots of microsomal proteins indicated that the increase in enzymatic activity was associated with an increase in content of P4502B1/2 immunoreactive proteins. In contrast to brain, total P450 content, activities of NADPH-cytochrome c reductase, BROD, and PROD, and levels of P4502B1 /2 immunoreactive proteins in liver were unaffected by chronic nicotine administration. Results indicate that chronic nicotine administration regulates the expression of P4502B1/2 in brain and that at the dose schedule used this effect occurs without a demonstrable effect on the hepatic P450 monooxygenase system.  相似文献   

6.
We investigated in vitro inhibitory effects of ketoconazole (KTZ) on cytochrome P450 activity in microsomes from pigs and Atlantic salmon. The following enzymatic reactions were studied: 7-benzyloxyresorufin and 7-ethoxyresorufin O-dealkylation (BROD and EROD, respectively), 7-benzyloxy-4-trifluoromethylcoumarin O-debenzylation (BFCOD) and 7-benzyloxyquinoline O-debenzylation (BQOD). KTZ was a potent non-competitive inhibitor of BROD and BQOD in the microsomes from pigs, whereas in the microsomes from Atlantic salmon, these reactions were competitively inhibited by KTZ. BFCOD activity was inhibited by KTZ in a non-competitive manner in both species. KTZ non-competitively inhibited EROD in Atlantic salmon, but not in porcine microsomes. The activity of BROD and BQOD was higher in male than that in female pigs, but the activity of BFCOD showed no sex-related differences.  相似文献   

7.
8.
The activities of 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-deethylase (PROD), 7-ethoxycoumarin-O-deethylase (ECOD) and aromatic hydrocarbon hydroxylase (AHH) were measured in hepatic microsomes from male and female Wistar rats and Syrian golden hamsters in order to probe the basal activity and the inducibility by phenobarbital (PB) and 3-methylcholanthrene (MC) of different P-450 isoenzymes. The basal activities of EROD and ECOD, but not PROD and AHH, were higher in male hamsters than in male rats. No sex-related difference in enzyme activities was observed with hamsters, whereas male rats had a higher ECOD and AHH activity than female rats. Induction by PB led to a 450-fold and 250-fold increase in PROD activity in male and female rat liver microsomes, respectively, while MC had a more pronounced inductive effect on EROD activity in this species. In hamsters, EROD activity was induced by MC but not by PB. Unexpectedly PROD activity in male and female hamster liver microsomes was only moderately induced by PB, the extent being lower than on induction by MC. Therefore, the activity of PROD, which is useful as a specific enzymatic assay for P-450 IIB in the rat liver, cannot be used to probe PB-like inducers in the hamster liver.  相似文献   

9.
Kelley RW  Cheng D  Backes WL 《Biochemistry》2006,45(51):15807-15816
Mixed reconstituted systems containing CYP2B4, CYP1A2, and NADPH-cytochrome P450 reductase were previously shown to exhibit a dramatic inhibition of 7-pentoxyresorufin O-dealkylation (PROD) when compared to simple reconstituted systems containing reductase and a single P450 enzyme, results consistent with the formation of CYP1A2-CYP2B4 complexes where the reductase binds with high affinity to the CYP1A2 moiety of the complex. In this report, we provide evidence for an interaction between CYP1A2 and CYP2E1. Synergism of 7-ethoxyresorufin O-deethylation (EROD) and PROD was observed when these P450s were combined in mixed reconstituted systems at subsaturating reductase concentrations. Higher ionic strength attenuated the synergistic stimulation of both PROD and EROD in mixed reconstituted systems, consistent with disruption of heteromeric CYP2E1-CYP1A2 complexes. The effect of ionic strength was further examined as a function of reductase concentration. At lower ionic strength, there was a significant synergistic stimulation of EROD. This synergistic stimulation diminished with increasing reductase concentration, resulting in an additive response as reductase became saturating. Interestingly, at high ionic strength, the synergism of EROD in the mixed reconstituted system was not observed. In contrast, mixed reconstituted systems containing CYP2E1 and CYP2B4 did not provide evidence for the formation of these heteromeric P450-P450 complexes. The synergistic stimulation observed with the reductase-CYP1A2-CYP2E1 mixed reconstituted system is consistent with the formation of a CYP1A2-CYP2E1 complex. Taken together with the lack of a kinetically detectable interaction between CYP2B4 and CYP2E1, and the previously reported CYP1A2-CYP2B4 interaction, these results suggest that CYP1A2 may facilitate the formation of complexes with other P450 enzymes.  相似文献   

10.
Ivermectin is an antiparasitic drug widely used in veterinary and human medicine. We have found earlier that repeated treatments of rats with high doses of this drug led to significant increase of cytochrome P450-dependent 7-methoxyresorufin O-demethylase (MROD) and 7-ethoxyresorufin O-deethylase (EROD) activities in hepatic microsomes. In the present study, the effects of ivermectin on cytochrome P450 (CYP) activities were investigated in mouflon (Ovis musimon) and fallow deer (Dama dama). This study was conducted also to point out general lack of information on both basal levels of CYP enzymes and their inducibilities by veterinary drugs in wild ruminants. Liver microsomes were prepared from control animals, mouflons, after single or repeated (six doses in six consecutive days) treatments with therapeutic doses of ivermectin (0.5 mg kg(-1) of body weight), and fallow deer exposed to repeated doses of ivermectin under the same conditions. Alkyloxyresorufins, testosterone and chlorzoxazone were used as the specific substrate probes of activities of the CYP isoenzymes. A single therapeutic dose of ivermectin significantly induced (300-400% of the control group) the activities of all alkyloxyresorufin dealkylases tested in mouflon liver microsomes. Repeated doses of ivermectin also caused an increase of these activities, but due to fair inter-individual differences, this increase was not significant. The administration of ivermectin led to an induction (170-210% of the control) of the testosterone 6beta- and 16alpha-hydroxylase activities in mouflon liver but no significant modulation of chlorzoxazone hydroxylase (CZXOH) activity was found in mouflon liver. CYP-dependent activities in hepatic microsomes were generally higher in fallow deer than in mouflons. However, with the exception of slight increase in the 7-benzyloxyresorufin O-dealkylase (BROD) activities, no significant modulation of the other activities was observed. The induction of CYP3A-like isoenzyme was confirmed by immunoblotting only in the microsomes from mouflons administered with repeated doses of ivermectin; however, no significant increase of CYP1A isoenzymes was observed due to a weak cross-reactivity of anti-rat CYP1A1/2 polyclonal antibodies used in the study. The results indicate that ivermectin should be considered as an inducer of several cytochrome P450 isoenzymes, including CYP1A, 2B and 3A subfamilies, in mouflons. The comparison of induction effect of ivermectin in rat, mouflon and fallow deer also demonstrates the inter-species differences in inducibility of CYP enzymes.  相似文献   

11.
Studies initiated to investigate the distribution of cytochrome P450 2B (CYP2B) isoenzymes in rat brain cells revealed significant activity of CYP2B-dependent 7-pentoxyresorufin-O-dealkylase (PROD) in microsomes prepared from both, cultured rat brain neuronal and glial cells. Neuronal cells exhibited 2-fold higher activity of PROD than the glial cells. RT-PCR and immunocytochemical studies demonstrated significant constitutive mRNA and protein expression of CYP2B in cultured neuronal and glial cells. Induction studies with phenobarbital (PB), a known CYP2B inducer, revealed significant concentration dependent increase in the activity of PROD in cultured brain cells with glial cells exhibiting greater magnitude of induction than the neuronal cells. This difference in the increase in enzyme activity was also observed with RT-PCR and immunocytochemical studies indicating differences in the induction of CYP2B1 and 2B2 mRNA as well as protein expression in the cultured brain cells. Furthermore, a greater magnitude of induction was observed in CYP2B2 than CYP2B1 in the brain cells. Our data indicating differences in the expression and sensitivity of the CYP2B isoenzymes in cultured rat brain cells will help in identifying and distinguishing xenobiotic metabolizing capability of these cells and understanding the vulnerability of the specific cell types toward neurotoxins.  相似文献   

12.
A Dey  D Parmar  M Dayal  A Dhawan  P K Seth 《Life sciences》2001,69(4):383-393
Studies initiated to characterise the catalytic activity and expression of CYP1A1 in rat blood lymphocytes revealed significant activity of 7-ethoxyresorufin-O-deethylase (EROD) in rat blood lymphocytes. Pretreatment with 3-methylcholanthrene (MC) and beta-naphthoflavone (NF) resulted in significant induction in the activity of lymphocyte EROD suggesting that like the liver enzyme, EROD activity in lymphocytes is inducible and is mediated by the MC inducible isoenzymes of P450. The increase in the activity of EROD was associated with a significant increase in the apparent Vmax and affinity of the substrate towards EROD. That this increase in the activity of EROD could be primarily due to the increase in the expression of CYP1A1 isoenzymes was demonstrated by RT-PCR and western immunoblotting studies indicating an increase in the expression of CYP1A1 in blood lymphocytes after MC pretreatment. Significant inhibition in the EROD activity of MC induced lymphocyte by anti-CYP1A1/1A2 and alpha-naphthoflavone further provided evidence that the CYP1A1/1A2 isoenzymes are involved in the activity of EROD in blood lymphocytes. The data indicating similarities in the regulation of CYP1A1 in blood lymphocytes with the liver isoenzyme suggests that factors which may affect expression of CYP1A1 in liver may also affect expression in blood lymphocytes and that blood lymphocytes could be used as a surrogates for studying hepatic expression of the xenobiotic metabolising enzymes.  相似文献   

13.
Resveratrol (trans-3,4',5-trihydroxystilbene) is a phytoalexin compound found in juice and wine produced from dark-skinned grape cultivars and reported to have anti-inflammatory and anticarcinogenic activities. To investigate the mechanism of anticarcinogenic activities of resveratrol, the effects on cytochrome P450 (P450) were determined in human liver microsomes and Escherichia coli membranes coexpressing human P450 1A1 or P450 1A2 with human NADPH-P450 reductase (bicistronic expression system). Resveratrol slightly inhibited ethoxyresorufin O-deethylation (EROD) activity in human liver microsomes with an IC(50) of 1.1 mM. Interestingly, resveratrol exhibited potent inhibition of human P450 1A1 in a dose-dependent manner with IC(50) of 23 microM for EROD and IC(50) of 11 microM for methoxyresorufin O-demethylation (MROD). However, the inhibition of human P450 1A2 by resveratrol was not so strong (IC(50) 1.2 mM for EROD and 580 microM for MROD). Resveratrol showed over 50-fold selectivity for P450 1A1 over P450 1A2. The activities of human NADPH-P450 reductase were not significantly changed by resveratrol. In a human P450 1A1/reductase bicistronic expression system, resveratrol inhibited human P450 1A1 activity in a mixed-type inhibition (competitive-noncompetitive) with a K(i) values of 9 and 89 microM. These results suggest that resveratrol is a selective human P450 1A1 inhibitor, and may be considered for use as a strong cancer chemopreventive agent in humans.  相似文献   

14.
In this study, macroporous microcarriers were used for the large-scale growth of parental V79 cells and V79 cells genetically engineered to express a single human cytochrome P4501A1 isoenzyme (V79h1A1). Starting from 2 × 105cells/ml, approximately 1 × 107cells/ml could easily be harvested after 6 days in the case of the parental V79 cells, or after 11 days in the case of the V79h1A1 cells, resulting in a total of 3.6 × 1010cells. For the first time, the presence of cytochrome P450 (CYP) in the expressed V79 cells could be demonstrated by CO difference spectra with a Soret maximum around 450 nm. CYP levels in microsomes derived from the V79h1A1 cells of 14 pmol/mg protein were achieved. Importantly, no CYP was detected in microsomal fractions of the parental V79 cells. Cytochrome b5 levels could also be measured by difference spectrophotometry. No significant differences were found between cytochrome b5 levels in microsomes derived from the large-scale growth of V79h1A1 cells and parental V79 cells, i.e., 16.7 ± 7.9 vs 14.5 ± 7.6 pmol/mg protein. The presence of human cytochrome P4501A1 (CYPh1A1) in microsomal fractions derived from the large-scale growth of V79h1A1 cells was further substantiated by measuring 7-ethoxyresorufin-O-deethylase (EROD), 7-ethoxycoumarin-O-dealkylase (ECOD), and testosterone-6β-hydroxylation activities. EROD, ECOD, and testosterone-6β-hydroxylation activities of the V79h1A1 microsomes were 40 pmol resorufin/min/pmol CYPh1A1, 13 pmol hydroxy-coumarin/min/pmol CYPh1A1, and 0.16 pmol 6β-hydroxytestosterone/min/pmol CYPh1A1, respectively, indicating the presence of a highly active human CYP1A1 enzyme system. Further confirmation that the CYP protein was correctly expressed was obtained by Western blotting. In conclusion, the use of macroporous microcarriers is suitable for large-scale growth of V79 cells expressing human CYP isoenzymes. The present method may provide an easy and rather inexpensive tool in obtaining large quantities of microsomes containing human CYP isoenzymes, which are involved in the bioactivation and bioinactivation of xenobiotics. High yields of microsomes containing human CYP isoenzymes may substantially facilitate the production of sufficient quantities of human metabolites to allow isolation and identification in an early stage of development of pharmacologically interesting drugs.  相似文献   

15.
Previous work suggested that the oxidation of uroporphyrinogen to uroporphyrin is catalyzed by cytochrome P450IA2. Here we determined whether purified reconstituted mouse P450IA1 and IA2 oxidize uroporphyrinogen. Cytochromes P450IA1 and IA2 were purified from hepatic microsomes from 3-methylcholanthrene (MC)-treated C57BL/6 mice, using a combination of affinity chromatography and high performance liquid chromatography. Reconstituted P450IA1 was more active than P450IA2 in catalyzing ethoxyresorufin-O-deethylase (EROD) activity, whereas P450IA2 was more active than P450IA1 in catalyzing uroporphyrinogen oxidation (UROX). Both reactions required NADPH, NADPH-cytochrome P450 reductase, and either P450IA1 or IA2. Ketoconazole competitively inhibited both EROD and UROX activities, in microsomes from MC-treated mice. Ketoconazole also inhibited UROX catalyzed by reconstituted P450IA2. In contrast, ketoconazole did not inhibit UROX catalyzed by xanthine oxidase in the presence of iron-EDTA. Superoxide dismutase, catalase, and mannitol inhibited UROX catalyzed by xanthine oxidase/iron-EDTA, but did not affect UROX catalyzed by either microsomes or reconstituted P450IA2. These results suggest that UROX catalyzed by P450IA2 in microsomes and reconstituted systems does not involve free reactive oxygen species. Two known substrates of cytochrome P450IA2, 2-amino-3,4-dimethylimidazole[4,5-f]quinoline and phenacetin, were shown to inhibit the microsomal UROX reaction, suggesting that uroporphyrinogen binds to a substrate-binding site on the cytochrome P450.  相似文献   

16.
O-Dealkylation of two series of fluorescent 7-alkoxy-coumarins and 7-alkoxyphenoxazones by plant cytochrome P450s was investigated in Helianthus tuberosus tuber tissues treated with prototype P450 inducers, environmental pollutants or agrochemicals. Methoxy-, ethoxy-, propoxy-and butoxycoumarins and methoxy- and ethoxyresorufins were metabolized by fplant microsomes. Dealkylation of pentoxy- and benzyloxyresorufins was not detected. All dealkylating activities were enhanced by aging plant tissues in the presence of xenobiotics, in some cases up to 20-fold relative to the activities detected in control tissues. Increases in total P450 in the same tissues never exceeded 3-fold. The isozymes induced by prototype P450 inducers clearly differed from those in mammalian liver. That multiple P450s with overlapping substrate specificities were involved in the metabolism of both alkoxycoumarins and alkoxyresorufins was demonstrated by (1) the differential induction of the activities in response to exposure to xenobiotics, (2) the differential inhibition of the activities by clotrimazole, paclobutrazole and tetcyclacis in aminopyrine and benzo(a)pyrene-treated tissues, and(3) the selective inhibition observed with antibodies raised against purified ethoxycoumarin deethylase fractions. Our results suggest that the measurement of the dealkylation of such fluorescent substrates in plants might be useful to monitor environmental pollution.  相似文献   

17.
A set of nine 4-aminomethyl-7-alkoxycoumarin derivatives was synthesized and characterized as substrates for O-dealkylation by recombinant cytochrome P450 2D6, a major human enzyme involved in drug metabolism. Enzymatic O-dealkylation yields 7-hydroxycoumarins, which have useful fluorescence properties. The substrates, which differed in substitution at the amino and 7-hydroxy positions, varied in terms of catalytic efficiency of O-dealkylation and in their selectivity as substrates for cytochrome P450 2D6 in human liver microsomes. Several of the compounds are useful as cytochrome P450 2D6 substrates in single-phase, rapid-throughput assays.  相似文献   

18.
Combined treatment of male Syrian golden hamsters with the synthetic estrogen diethylstilbestrol (DES) and 7,8-benzoflavone (7,8-BF) gives rise to a high incidence of hepatocellular carcinomas, whereas no such tumors are formed with DES alone nor with 7,8-BF alone. To determine whether alterations in DES metabolism may account for the observed hepatocarcinogenicity, we have studied the effect of pretreatment with 7,8-BF alone, DES alone and 7,8-BF plus DES on the levels of hepatic P-450 and cytochrome b5, on the activities of various P-450 isoenzymes and on microsomal DES metabolism. Hepatic P-450 content was significantly increased after pretreatment with 7,8-BF and decreased after DES, while combined pretreatment led to levels similar to those in untreated control animals. Hepatic cytochrome b5 was also elevated in 7,8-BF-treated hamsters; DES pretreatment had no effect, and combined pretreatment led to a slight increase. Four different substrates were used to probe P-450 isoenzyme activity. Aryl hydrocarbon hydroxylase (AHH), 7-ethoxycoumarin-O-deethylase (ECOD), 7-ethoxyresorufin-O-deethylase (EROD) and 7-pentoxyresorufin-O-dealkylase (PROD) were all elevated after 7,8-BF-pretreatment, while DES led to a decrease in these activities with the exception of AHH, where a transient increase which was observed after 8 and 20 weeks of pretreatment was back to control levels after 32 weeks. Combined pretreatment with 7,8-BF and DES led to an intermediate response (slight increase) with AHH, EROD and PROD, but not with ECOD, where a full induction comparable with that observed after 7,8-BF alone was elicited. In spite of the modulation of enzyme levels and activities observed after the various pretreatments, the metabolism of DES in microsomes from pretreated animals was virtually identical with that from controls. Therefore it is concluded that modulation of hepatic DES metabolism is not the reason for the observed hepatotumorigenicity; instead, it is speculated that 7,8-BF is the carcinogenic agent in this tumor model, and DES may act as a promotor.  相似文献   

19.
Modulation of the cytochrome P450 (CYP) monooxygenase system (P450) by arsenite was investigated in male, adult Sprague-Dawley rats treated with a single dose (75 micromol/kg, sc) of sodium arsenite (As3+). Total CYP content and P450-dependent 7-pentoxyresorufin O-pentylation (PROD) and 7-ethoxyresorufin O-deethylation (EROD) activities of liver microsomes decreased maximally (33, 35, and 50% of control, respectively) 1 day after As3+ treatment. Maximum decreases of CYP content and P450 catalytic activities corresponded with maximum increases of microsomal heme oxygenase (HO) activity and with increased total plasma bilirubin concentrations. EROD activity increased maximally in lung (300%) 5 days after a single dose of As3+. Lung CYP1A1 mRNA and protein levels also increased maximally 5 days after treatment. A small but significant increase in EROD activity (65%) was observed in lung microsomes 24 h following a 1 h infusion of bilirubin (7.5 mg/kg) into rats. However, administration of bilirubin to the lung via intratracheal injection (0.25 and 2.5 mg/kg) did not increase CYP1A1 monooxygenase activity or mRNA. This study demonstrates that P450 is modulated in an isozyme (CYP1A1 vs CYP2B1/2) selective manner in rat lung after acute As3+ administration. Administration of bilirubin, a potential aryl hydrocarbon receptor (AHR) ligand, by infusion or intratracheal instillation did not upregulate pulmonary CYP1A1 at the mRNA level under our treatment conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号