首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Thompson MP  Kim D 《FEBS letters》2004,568(1-3):4-9
Physiological and pathological states that are associated with elevated plasma fatty acids (FAs) increase uncoupling protein 2 (UCP2) mRNA in white adipose tissue and UCP3 mRNA in skeletal muscle and heart. A direct effect of unsaturated fatty acids from all classes has been shown in various cultured cells. There is evidence that FAs could induce expression of UCPs by acting as ligands for peroxisome proliferator-activated receptors, influencing the function of sterol responsive element binding protein or activating 5'-AMP-activated protein kinase. Oleic acid has been shown to stimulate the activity of the promoter regions of UCP2 and UCP3 genes and the FA responsive regions are beginning to be characterised.  相似文献   

4.
Body fat content is controlled, at least in part, by energy charge of adipocytes. In vitro studies indicated that lipogenesis as well as lipolysis depend on cellular ATP levels. Respiratory uncoupling may, through the depression of ATP synthesis, control lipid metabolism of adipose cells. Expression of some uncoupling proteins (UCP2 and UCP5) as well as other protonophoric transporters can be detected in the adipose tissue. Expression of other UCPs (UCP1 and UCP3) can be induced by pharmacological treatments that reduce adiposity. A negative correlation between the accumulation of fat and the expression of UCP2 in adipocytes was also found. Ectopic expression of UCP1 in the white fat of aP2-Ucp1 transgenic mice mitigated obesity induced by genetic or dietary factors. In these mice, changes in lipid metabolism of adipocytes were associated with the depression of intracellular energy charge. Recent data show that AMP-activated protein kinase may be involved in the complex changes elicited by respiratory uncoupling in adipocytes. Changes in energy metabolism of adipose tissue may mediate effects of treatments directed against adiposity, dyslipidemia, and insulin resistance.  相似文献   

5.
The cloning of the uncoupling protein (UCP)1 homologs UCP2 and UCP3 has raised considerable interest in the mechanism. The expression of UCP3 mainly in skeletal muscle mitochondria and the potency of the skeletal muscle as a thermogenic organ made UCP3 an attractive target for studies toward manipulation of energy expenditure to fight disorders such as obesity and type 2 diabetes. Overexpressing UCP3 in mice resulted in lean, hyperphagic mice. However, the lack of an apparent phenotype in mice lacking UCP3 triggered the search for alternative functions of UCP3. The observation that fatty acid levels significantly affect UCP3 expression has given UCP3 a position in fatty acid handling and/or oxidation. Emerging data indicate that the primary physiological role of UCP3 may be the mitochondrial handling of fatty acids rather than the regulation of energy expenditure through thermogenesis. It has been proposed that UCP3 functions to export fatty acid anions away from the mitochondrial matrix. In doing so, fatty acids are exchanged with protons, explaining the uncoupling activity of UCP3. The exported fatty acid anions may originate from hydrolysis of fatty acid esters by a mitochondrial thioesterase, or they may have entered the mitochondria as nonesterified fatty acids by incorporating into and flip‐flopping across the mitochondrial inner membrane. Regardless of the origin of the fatty acid anions, this putative function of UCP3 might be of great importance in protecting mitochondria against fatty acid accumulation and may help to maintain muscular fat oxidative capacity.  相似文献   

6.
7.
8.
9.
Uncoupling proteins (UCP1, UCP2 and UCP3) are important in regulating cellular fuel metabolism and as attenuators of reactive oxygen species production through strong or mild uncoupling. The generic function and broad tissue distribution of the uncoupling protein family means that they are increasingly implicated in a range of pathophysiological processes including obesity, insulin resistance and diabetes mellitus, neurodegeneration, cardiovascular disease, immunity and cancer. The significant recent progress describing the turnover of novel uncoupling proteins, as well as current views on the physiological roles and regulation of UCPs, is outlined.  相似文献   

10.
Reconstitution of novel mitochondrial uncoupling proteins, human UCP2 and UCP3, expressed in yeast, was performed to characterize fatty acid (FA)-induced H+ efflux in the resulted proteoliposomes. We now demonstrate for the first time that representatives of physiologically abundant long chain FAs, saturated or unsaturated, activate H+ translocation in UCP2- and UCP3-proteoliposomes. Efficiency of lauric, palmitic or linoleic acid was roughly the same, but oleic acid induced faster H+ uniport. We have confirmed that ATP and GTP inhibit such FA-induced H+ uniport mediated by UCP2 and UCP3. Coenzyme Q10 did not further significantly activate the observed H+ efflux. In conclusion, careful instant reconstitution yields intact functional recombinant proteins, UCP2 and UCP3, the activity of which is comparable with UCP1.  相似文献   

11.
12.
Skeletal muscle lipid accumulation is associated with several chronic metabolic disorders, including obesity, insulin resistance (IR) and type 2 diabetes. The aim of this study is to evaluate whether static imaging time-of-flight-secondary-ion mass spectrometry (TOF-SIMS) equipped with a Bismuth-cluster ion source can be used for studying skeletal muscle lipid accumulation associated with obesity. Mouse gastrocnemius muscle tissues in 10-week-old obese ob/ob (n = 8) and lean wild-type C57/BL6 (n = 6) mice were analyzed by TOF-SIMS. Our results showed that signal intensities of fatty acids (FAs) and diacylglycerols (DAGs) were significantly increased in skeletal muscle of the obese ob/ob mice as compared to the lean wild-type mice. These differences were revealed through a global analytical approach, principal component analysis (PCA) of TOF-SIMS spectra, and ion-specific TOF-SIMS images. Region-of-interest (ROI) analysis showed that FA signal intensities within the muscle cell were significantly increased in ob/ob mice. Moreover, analysis of the ratio between different FA peaks revealed changes in monounsaturated FAs (MUFAs) and polyunsaturated FAs (PUFAs), which is in agreement with previous reports on obesity. These changes in FA composition were also reflected in the ratio of different DAGs or phosphatidylcholines (PCs) that contain different FA residues. Imaging TOF-SIMS together with PCA of TOF-SIMS spectra is a promising tool for studying skeletal muscle lipid accumulation associated with obesity.  相似文献   

13.
Uncoupling protein-1 (UCP1) dissipates the transmitochondrial proton gradient as heat. UCP2 and UCP3 are two recently discovered homologues that also have uncoupling activity and thus presumably have a role in energy homeostasis. We now report the genomic structure of murine UCP3 (7 exons) and UCP2 (8 exons). UCP3 is approximately 8 kilobases upstream of UCP2. An UCP3 variant mRNA, UCP3S, was also found and characterized. The effect of a high fat diet (45% versus 10%) on UCP3 and UCP2 mRNA levels was measured. Eating the 45% fat diet for eight weeks caused greater weight gain in AKR and C57BL/6J mice than in the obesity-resistant A/J mice. The high fat diet increased muscle UCP3 expression twofold in C57BL/6J animals. UCP2 expression increased slightly on the 45% fat diet in white adipose of AKR mice, but not in A/J or C57BL/6J mice. In skeletal muscle, UCP2 expression showed little variation with diet. Thus, UCP2 and UCP3 expression levels change in response to diet-induced obesity, but the changes are modest and depend on the tissue and genotype. The data suggest that it is not a reduction in UCP2 or UCP3 expression that causes obesity in the susceptible mice.  相似文献   

14.
15.
In order to understand the role of brain localized uncoupling proteins, we have examined the UCP2 and BMCP-1 gene expression in mice brain in two different catabolic states: administration of lipopolysaccharide (LPS) (2.5 mg/kg, i.p.) and tumour burden. Administration of LPS resulted in an increased UCP2 gene expression both in brain (208%) and cerebellum (77%). An increase in UCP2 gene expression was also observed after LPS treatment in double knockout mice for tumour necrosis factor-α (TNF) receptors 1 and 2 (75% in brain and 33% in cerebellum). Tumour growth also resulted in increased brain UCP2 gene expression (80%) in mice bearing the Lewis lung carcinoma as compared with the non-tumour-bearing controls. No changes were observed in BMCP-1 mRNA levels of either LPS-injected or tumour-bearing mice. From the results presented it may be suggested that: (a) the brain may contribute significantly to the increase in energy expenditure associated with hypermetabolic states such as fever and tumour burden, and (b) the regulation of UCP2 gene expression in brain does not seem to be influenced by TNF; therefore the action of other cytokines cannot be discarded.  相似文献   

16.
The production of reactive oxygen species (ROS) in mitochondria is very sensitive to the proton motive force and may be decreased by mild uncoupling, mediated e.g. by mitochondrial uncoupling proteins (UCPs). UCPs were conversely hypothesized to be activated by ROS. Conclusions from experiments studying the reactive product of lipid peroxidation 4-hydroxy-2-nonenal (HNE) in isolated mitochondria and UCP knock-out mice are highly controversial. Here we investigated the molecular mechanism of HNE action by evaluating the separate contributions of lipid and protein phases of the membrane and by comparing UCP1 and UCP2, which were reconstituted in planar lipid bilayers. We demonstrated that aldehyde does not directly activate either UCP1 or UCP2. However, HNE strongly potentiated the membrane conductance increase (Gm) mediated by different long-chain fatty acids in UCP-containing and in UCP-free membranes and this suggest the involvement of both lipid-mediated and protein-mediated mechanisms with FA playing the central role. Gm increase was concentration-dependent and exhibited a typical saturation kinetic with the binding constant 0.3 mM. By using Electron Paramagnetic Resonance, membrane fluidity change could be excluded as a cause for the HNE-mediated increase in the presence of FA. The impact of the HNE binding to definite positively charged UCP amino acid residues is discussed as a possible protein-mediated mechanism of the UCP activation.  相似文献   

17.
Fish oil feeding showed less obesity in rodents, relative to other dietary oils. N-3 fatty acids rich in fish oil and fibrate compounds are peroxisome proliferator-activated receptor alpha (PPARalpha) ligands that stimulate beta-oxidation of fatty acids in liver and are used for treatment of hypertriglycemic patients. Since UCP-2, a member of an uncoupling protein family, has been shown to express in hepatocytes, the effects of these agents on the expression of UCP2 mRNA were investigated. C57BL/6J mice were divided into three groups; the first group was given a high-carbohydrate diet, and the other two groups were given a high-fat diet (60% of total energy) as safflower oil or fish oil for 5 months. Safflower oil diet fed mice developed obesity, but those fed fish oil diet did not. Therefore, the effects of fish oil feeding on the expression of UCP1, UCP2 and UCP3 in liver, skeletal muscle (gastrocnemius), white adipose tissue (WAT) and brown adipose tissue (BAT) were assessed by Northern blotting. Compared with safflower oil feeding, fish oil feeding up-regulated liver UCP2, BAT UCP2 and skeletal muscle UCP3 mRNA, while down-regulated WAT UCP2 and BAT UCP3 mRNA. Among these alterations, 5-fold up-regulation of liver UCP2 mRNA, relative to carbohydrate feeding, was noteworthy. Fenofibrate administration (about 500 mg/kg BW/d) for 2 wks also induced liver UCP2 expression by 9-fold. These data indicated that fish oil feeding and fibrate administration each up-regulated UCP2 mRNA expression in liver possibly via PPARalpha and hence each has the potential of increasing energy expenditure for prevention of obesity.  相似文献   

18.
Uncoupling proteins: the issues from a biochemist point of view   总被引:11,自引:0,他引:11  
The functional characteristics of uncoupling proteins (UCP) are reviewed, with the main focus on the results with isolated and reconstituted proteins. UCP1 from brown adipose tissue, the paradigm of the UCP subfamily, is treated in more detail. The issues addressed are the role and mechanism of fatty acids, the nucleotide binding, the regulation by pH and the identification by mutagenesis of residues involved in these functions. The transport and regulatory functions of UCP2 and 3 are reviewed in comparison to UCP1. The inconsistencies of a proposed nucleotide insensitive H(+) transport by these UCPs as concluded from the expression in yeast and Escherichia coli are elucidated. In both expression system UCP 2 and 3 are not in or cannot be converted to a functionally native state and thus also for these UCPs a nucleotide regulated H (+) transport is postulated.  相似文献   

19.
Mitochondrial uncoupling in skeletal muscle has raised a major interest as a therapeutic target for treatment of obesity, insulin sensitivity, and age-related disease. These physiological effects could be demonstrated in several mouse models ectopically expressing uncoupling protein 1 (UCP1). Here, we investigated whether UCP1 expressed under the control of the human skeletal actin (HSA) promoter in mouse skeletal muscle can be regulated, and whether it affects mitochondrial superoxide production. We show that the skeletal muscle UCP1 can be fully inhibited by a purine nucleotide (GDP) and reactivated by fatty acids (palmitate). During mitochondrial resting state (State 4), mitochondrial superoxide production is about 76% lower in transgenic mice. We suggest that this reduction is due to uncoupling activity as the administration of GDP restores superoxide production to wildtype levels. Our study confirms native behaviour of UCP1 in skeletal muscle and demonstrates beneficial effects on prevention of mitochondrial reactive oxygen species production which may reduce age-related deleterious processes.  相似文献   

20.
Oxidative stress and mitochondrial dysfunction are associated with disease and aging. Oxidative stress results from overproduction of reactive oxygen species (ROS), often leading to peroxidation of membrane phospholipids and production of reactive aldehydes, particularly 4-hydroxy-2-nonenal. Mild uncoupling of oxidative phosphorylation protects by decreasing mitochondrial ROS production. We find that hydroxynonenal and structurally related compounds (such as trans-retinoic acid, trans-retinal and other 2-alkenals) specifically induce uncoupling of mitochondria through the uncoupling proteins UCP1, UCP2 and UCP3 and the adenine nucleotide translocase (ANT). Hydroxynonenal-induced uncoupling was inhibited by potent inhibitors of ANT (carboxyatractylate and bongkrekate) and UCP (GDP). The GDP-sensitive proton conductance induced by hydroxynonenal correlated with tissue expression of UCPs, appeared in yeast mitochondria expressing UCP1 and was absent in skeletal muscle mitochondria from UCP3 knockout mice. The carboxyatractylate-sensitive hydroxynonenal stimulation correlated with ANT content in mitochondria from Drosophila melanogaster expressing different amounts of ANT. Our findings indicate that hydroxynonenal is not merely toxic, but may be a biological signal to induce uncoupling through UCPs and ANT and thus decrease mitochondrial ROS production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号