首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cathepsin E is an endolysosomal aspartic proteinase predominantly expressed in cells of the immune system and has been implicated in various physiological and pathological processes. Because of physiological substrates of cathepsin E have not yet been identified, however, the physiological significance of this protein still remains speculative. To better understand the physiological significance of cathepsin E in the mammary gland, we investigated the effect of the deficiency of this protein on the gene expression profile of the tissue. Here we used mammary glands derived from multiparous and non-pregnant 11-month-old syngenic wild-type (CatE(+/+)) and cathepsin E-deficient (CatE(-/-)) mice for extraction of total RNA from each tissue and subsequent mRNA amplification, DNA fragmentation, and hybridization with cDNA mixroarray chips. A total of 654 genes were identified as overexpressed (>2-fold) in CatE(-/-) mammary glands compared with CatE(+/+) counterparts. These included genes related to signal transduction, immune responses, growth factor activity, and milk proteins, which occupied a large portion of the gene fragments identified as overexpressed. In contrast, a total of 665 known genes were identified as underexpressed in the mammary gland of CatE(-/-) mice compared with CatE(+/+) counterparts. These included genes related to cytoskeleton, cell differentiation, cell cycle arrest and apoptosis, which occupied the majority of the gene fragments identified as underexpressed. The results thus suggest that cathepsin E in mammary glands plays a crucial role in the regulation of proteins involved in signaling, development, differentiation and proliferation in the mammary gland.  相似文献   

2.
The aim of this study was to examine the role of fatty acid amide hydrolase (FAAH) on ethanol sensitivity, preference, and dependence. The deletion of FAAH gene or the inhibition of FAAH by carbamoyl-biphenyl-3-yl-cyclohexylcarbamate (URB597) (0.1 mg/kg) markedly increased the preference for ethanol. The study further reveals that URB597 specifically acts through FAAH and that cannabinoid-1 (CB1) receptor is critical for N -arachidonoyl ethanolamide (AEA) mediated ethanol-reinforced behavior as revealed by lack of URB597 effect in both FAAH and CB1−/− mice compared with vehicle-treated −/− mice. The FAAH −/− mice displayed a lower sensitivity to hypothermic and sedative effects to acute ethanol challenge. The FAAH −/− mice also exhibited a reduction in the severity of handling-induced convulsions following withdrawal from chronic ethanol exposure. The CB1 receptor and proenkephalin gene expressions, and CB1 receptor and μ-opioid (MO) receptor-mediated G-protein activation were found to be significantly lower in the caudate-putamen, nucleus accumbens core and shell of FAAH −/− than +/+ mice. Interestingly, the MO receptor-stimulated G-protein signaling was greater in the striatum of FAAH −/− than +/+ mice following voluntary ethanol consumption. These findings suggest that an elevation in the AEA content and its action on the limbic CB1 receptor and MO receptor might contribute to ethanol-reinforced behavior. Treatment with drugs that decrease AEA tone might prove useful in reducing excessive ethanol consumption.  相似文献   

3.
Cathepsin E, an intracellular aspartic proteinase, is predominantly localized in the endosomal compartments of immune system cells. In the present study, we investigated the role of cathepsin E in immune defense systems against bacterial infection. Cathepsin E-deficient (CatE(-/-)) mice showed dramatically increased susceptibility to infection with both the Gram-positive bacterium Staphyrococcus aureus, and the Gram-negative bacterium Porphyromonas gingivalis when compared with syngeneic wild-type mice, most likely due to impaired regulation of bacterial elimination. Peritoneal macrophages from CatE(-/-) mice showed significantly impaired tumor necrosis factor-alpha and IL-6 production in response to S. aureus and decreased bactericidal activities toward this bacterium. Moreover, the cell surface levels of Toll-like receptor-2 (TLR2) and TLR4, which recognize specific components of Gram-positive and -negative bacteria, respectively, were decreased in CatE(-/-) macrophages, despite no significant difference in the total cellular expression levels of these receptors between the wild-type and CatE(-/-) macrophages, implying trafficking defects in these surface receptors in the latter. These results indicate an essential role of cathepsin E in immune defense against invading microorganisms, most probably due to regulation of the cell surface expression of TLR family members required for innate immune responses.  相似文献   

4.
We show that genital infection with neurotropic HSV type 2 (HSV-2) induced a significant increase of the neuropeptide substance P (SP) within the genital tract of mice. SP was shown to weakly interfere with the HSV-2 replication. Furthermore, lack of SP signaling through the use of mice deficient in the SP receptor, neurokinin 1 receptor (NK1R), revealed an important role for SP in the innate defense against HSV-2. NK1R-deficient mice had significantly enhanced levels of HSV-2 in the genital tract and in the CNS following infection and a significantly accelerated disease progression, which was associated with an impaired NK cell activity locally in the vagina. Lack of NK1R signaling did, however, not impair the animals' ability to mount a protective immune response to HSV-2 following vaccination with an attenuated virus. Both NK1R+/+ and NK1R-/- mice developed strong HSV-2-specific Th1 T cell responses following vaccination. No genital viral replication was observed in either vaccinated NK1R-deficient or NK1R+/+ control animals following a genital HSV-2 challenge, and all of these animals survived without any symptoms of disease. In conclusion, the present results indicate that SP and NK1R signaling contributes to the innate resistance against HSV-2 infection in mice.  相似文献   

5.
The neuronal ceroid lipofuscinoses comprise a group of inherited severe neurodegenerative lysosomal disorders characterized by lysosomal dysfunction and massive accumulation of fluorescent lipopigments and aggregated proteins. To examine the role of lipids in neurodegenerative processes of these diseases, we analysed phospho- and glycolipids in the brains of ctsd−/− and nclf mice, disease models of cathepsin D and CLN6 deficiency, respectively. Both ctsd−/− and nclf mice exhibited increased levels of GM2 and GM3 gangliosides. Immunohistochemically GM2 and GM3 staining was found preferentially in neurons and glial cells, respectively, of ctsd−/− mice. Of particular note, a 20-fold elevation of the unusual lysophospholipid bis(monoacylglycero)phosphate was specifically detected in the brain of ctsd−/− mice accompanied with sporadic accumulation of unesterified cholesterol in distinct cells. The impaired processing of the sphingolipid activator protein precursor, an in vitro cathepsin D substrate, in the brain of ctsd−/− mice may provide the mechanistic link to the storage of lipids. These studies show for the first time that cathepsin D regulates the lysosomal phospho- and glycosphingolipid metabolism suggesting that defects in the composition, trafficking and/or recycling of membrane components along the late endocytic pathway may be critical for the pathogenesis of early onset neuronal ceroid lipofuscinoses.  相似文献   

6.
Many data suggest the deep involvement of the substance P (SP)/neurokinin (NK)-1 receptor system in cancer: (1) Tumor cells express SP, NK-1 receptors and mRNA for the tachykinin NK-1 receptor; (2) Several isoforms of the NK-1 receptor are expressed in tumor cells; (3) the NK-1 receptor is involved in the viability of tumor cells; (4) NK-1 receptors are overexpressed in tumor cells in comparison with normal ones and malignant tissues express more NK-1 receptors than benign tissues; (5) Tumor cells expressing the most malignant phenotypes show an increased percentage of NK-1 receptor expression; (6) The expression of preprotachykinin A is increased in tumor cells in comparison with the levels found in normal cells; (7) SP induces the proliferation and migration of tumor cells and stimulates angiogenesis by increasing the proliferation of endothelial cells; (8) NK-1 receptor antagonists elicit the inhibition of tumor cell growth; (9) The specific antitumor action of NK-1 receptor antagonists on tumor cells occurs through the NK-1 receptor; (10) Tumor cell death is due to apoptosis; (11) NK-1 receptor antagonists inhibit the migration of tumor cells and neoangiogenesis. The NK-1 receptor is a therapeutic target in cancer and NK-1 receptor antagonists could be considered as broad-spectrum antitumor drugs for the treatment of cancer. It seems that a common mechanism for cancer cell proliferation mediated by SP and the NK-1 receptor is triggered, as well as a common mechanism exerted by NK-1 receptor antagonists on tumor cells, i.e. apoptosis.  相似文献   

7.
Cathepsin E, an endolysosomal aspartic proteinase predominantly expressed in cells of the immune system, has an important role in immune responses. However, little is known about the precise roles of cathepsin E in this system. Here we report that cathepsin E deficiency (CatE(-/-)) leads to a novel form of lysosome storage disorder in macrophages, exhibiting the accumulation of the two major lysosomal membrane sialoglycoproteins LAMP-1 and LAMP-2 and the elevation of lysosomal pH. These striking features were also found in wild-type macrophages treated with pepstatin A and Ascaris inhibitor. Whereas there were no obvious differences in their expression, biosynthesis, and trafficking between wild-type and CatE(-/-) macrophages, the degradation rates of these two membrane proteins were apparently decreased as a result of cathepsin E deficiency. Because there was no difference in the vacuolar-type H(+)-ATPase activity in both cell types, the elevated lysosomal pH in CatE(-/-) macrophages is most likely due to the accumulation of these lysosomal membrane glycoproteins highly modified with acidic monosaccharides, thereby leading to the disruption of non-proton factors controlling lysosomal pH. Furthermore, the selective degradation of LAMP-1 and LAMP-2, as well as LIMP-2, was also observed by treatment of the lysosomal membrane fraction isolated from wild-type macrophages with purified cathepsin E at pH 5. Our results thus suggest that cathepsin E is important for preventing the accumulation of these lysosomal membrane sialoglycoproteins that can induce a new form of lysosomal storage disorder.  相似文献   

8.
In three genuses and four species of rodents, housing in winter-like short days (8L:16D) increases male aggressive behavior. In all of these species, males undergo short-day induced regression of the reproductive system. Some studies, however, suggest that the effect of photoperiod on aggression may be independent of reproductive responses. We examined the effects of photoperiod on aggressive behavior in California mice (Peromyscus californicus), which do not display reproductive responsiveness to short days. As expected, short days had no effect on plasma testosterone. Estrogen receptor alpha and estrogen receptor beta immunostaining did not differ in the lateral septum, medial preoptic area, bed nucleus of the stria terminalis, or medial amygdala. However, males housed in short days were significantly more aggressive than males housed in long days. Similar to previous work in beach mice (Peromyscus polionotus), estradiol rapidly increased aggression when male California mice were housed in short days but not when housed in long days. These data suggest that the effects of photoperiod on aggression and estrogen signaling are independent of reproductive responses. The rapid action of estradiol on aggression in short-day mice also suggests that nongenomic mechanisms mediate the effects of estrogens in short days.  相似文献   

9.
Methamphetamine (METH) is an addictive substance that also causes extensive neural degeneration in the central nervous system. Because METH augments striatal substance P (SP) levels, we hypothesized that this neuropeptide plays a role in methamphetamine-induced toxicity and neural damage in the striatum. In this study we present evidence demonstrating that signaling through the neurokinin-1 (NK-1) receptor by SP plays an important role in methamphetamine-induced toxicity in the striatum. We tested the effects of the selective NK-1 receptor antagonists WIN-51,708 and L-733,060 on several markers of dopaminergic terminal toxicity in the mouse striatum. Administration of NK-1 receptor antagonist prevented the loss of dopamine transporters assessed by autoradiography and western blotting, the loss of tissue dopamine assessed by high-pressure liquid chromatography, and the loss of tyrosine hydroxylase, as well as the induction of glial fibrillary acidic protein determined by western blotting. Pre-treatment with NK-1 receptor antagonist had no effect on METH-induced hyperthermia. Pre-exposure of mice to either of the NK-1 receptor antagonists alone was without effect on all of these neurochemical markers. These results provide the first evidence that tachykinins, particularly SP, acting through NK-1 receptors, play a crucial role in the pathogenesis of nigrostriatal dopaminergic terminal degeneration induced by METH. This finding could lead to novel therapeutic strategies to offset drug addictions as well as in the treatment of a number of disorders including Parkinson's and Huntington's diseases.  相似文献   

10.
The melanocortin (MC) system is composed of peptides that are cleaved from the polypeptide precursor proopiomelanocortin (POMC). Recent pharmacological and genetic evidence suggests that melanocortin receptor (MCR) signaling modulates neurobiological responses to ethanol and ethanol intake. Agouti-related protein (AgRP) is synthesized by neurons in the arcuate nucleus of the hypothalamus and is a natural antagonist of MCRs. Because central administration of the functionally active AgRP fragment AgRP-(83–132) increases ethanol intake by C57BL/6 J mice, we determined if mutant mice lacking normal production of AgRP (AgRP−/−) and maintained on a C57BL/6 J genetic background would show reduced self-administration of ethanol relative to littermate wild-type (AgRP+/+) mice. AgRP−/— mice showed reduced 8% (v/v) ethanol-reinforced lever-pressing behavior relative to AgRP+/+ mice in daily 2-h sessions, but normal sucrose-, saccharin- and water-reinforced lever-pressing. Similarly, AgRP−/− mice showed reduced consumption of 8% ethanol in a two-bottle limited access test (2 h/day), although this effect was largely sex-dependent. Using drinking-in-the-dark (DID) procedures, AgRP−/— mice showed blunted binge-like drinking of 20% (v/v) ethanol which was associated with lower blood ethanol levels (85 mg/dl) relative to AgRP+/+ mice (133 mg/dl) after 4 h of intake. AgRP−/− mice showed normal ethanol metabolism and did not show altered sensitivity to the sedative effects of ethanol. These observations with genetically altered mice are consistent with previous pharmacological data and suggest that endogenous AgRP signaling modulates the reinforcing properties of ethanol and binge-like ethanol drinking.  相似文献   

11.
《Life sciences》1991,48(2):PL7-PL11
Substance P (SP) has been indicated as a main mediator of neurogenic inflammation, leading to vasodilation, increase in vascular permeability and modulation of immune cell function. Certain vascular effects produced by SP are endothelium mediated. We have studied the effect of SP and of selective NK-1, NK-2 and NK-3 receptor agonists on migration of cultured capillary endothelial cells of bovine origin. Our results indicate that SP (10−14–10−6 M) induces a concentration-dependent migration of endothelial cells with maximal activity at 10−10 M. This effect was mimicked by the selective NK-1 receptor agonist which showed a similar concentration-dependent curve, while selective NK-2 and NK-3 receptor agonists were ineffective. Our conclusions are that endothelial cells possess specific receptors for SP of the NK-1 type which affect mobilization of capillary endothelial cells.  相似文献   

12.
In bile duct-ligated (BDL) rats, cholangiocyte proliferation is regulated by neuroendocrine factors such as α-calcitonin gene-related peptide (α-CGRP). There is no evidence that the sensory neuropeptide substance P (SP) regulates cholangiocyte hyperplasia. Wild-type (WT, (+/+)) and NK-1 receptor (NK-1R) knockout (NK-1R(-/-)) mice underwent sham or BDL for 1 wk. Then we evaluated 1) NK-1R expression, transaminases, and bilirubin serum levels; 2) necrosis, hepatocyte apoptosis and steatosis, and the number of cholangiocytes positive by CK-19 and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling in liver sections; 3) mRNA expression for collagen 1α and α-smooth muscle (α-SMA) actin in total liver samples; and 4) PCNA expression and PKA phosphorylation in cholangiocytes. In cholangiocyte lines, we determined the effects of SP on cAMP and D-myo-inositol 1,4,5-trisphosphate levels, proliferation, and PKA phosphorylation. Cholangiocytes express NK-1R with expression being upregulated following BDL. In normal NK-1R(-/-) mice, there was higher hepatocyte apoptosis and scattered hepatocyte steatosis compared with controls. In NK-1R (-)/(-) BDL mice, there was a decrease in serum transaminases and bilirubin levels and the number of CK-19-positive cholangiocytes and enhanced biliary apoptosis compared with controls. In total liver samples, the expression of collagen 1α and α-SMA increased in BDL compared with normal mice and decreased in BDL NK-1R(-/-) compared with BDL mice. In cholangiocytes from BDL NK-1R (-)/(-) mice there was decreased PCNA expression and PKA phosphorylation. In vitro, SP increased cAMP levels, proliferation, and PKA phosphorylation of cholangiocytes. Targeting of NK-1R may be important in the inhibition of biliary hyperplasia in cholangiopathies.  相似文献   

13.
Cathepsin E (CatE) is predominantly expressed in the rapidly regenerating gastric mucosal cells and epidermal keratinocytes, in addition to the immune system cells. However, the role of CatE in these cells remains unclear. Here we report a crucial role of CatE in keratinocyte terminal differentiation. CatE deficiency in mice induces abnormal keratinocyte differentiation in the epidermis and hair follicle, characterized by the significant expansion of corium and the reduction of subcutaneous tissue and hair follicle. In a model of skin papillomas formed in three different genotypes of syngeneic mice, CatE deficiency results in significantly reduced expression and altered localization of the keratinocyte differentiation induced proteins, keratin 1 and loricrin. Involvement of CatE in the regulation of the expression of epidermal differentiation specific proteins was corroborated by in vitro studies with primary cultures of keratinocytes from the three different genotypes of mice. In wild-type keratinocytes after differentiation inducing stimuli, the CatE expression profile was compatible to those of the terminal differentiation marker genes tested. Overexpression of CatE in mice enhances the keratinocyte terminal differentiation process, whereas CatE deficiency results in delayed differentiation accompanying the reduced expression or the ectopic localization of the differentiation markers. Our findings suggest that in keratinocytes CatE is functionally linked to the expression of terminal differentiation markers, thereby regulating epidermis formation and homeostasis.  相似文献   

14.
Li S  Tian X  Hartley DM  Feig LA 《Current biology : CB》2006,16(23):2303-2313
BACKGROUND: A challenge in biomedical research is to design experimental paradigms that reflect a natural setting. Even when freshly isolated tissues are used, they are almost always derived from animals housed in cages that poorly reflect the animal's native environment. This issue is highlighted by studies on brain function, where mice housed in a more natural "enriched environment" display enhanced learning and memory and delayed onset of symptoms of neurodegenerative diseases compared to mice housed conventionally. How the environment mediates its effects on brain function is poorly understood. RESULTS: We show that after exposure of adolescent mice to an "enriched environment," the induction of long-term potentiation (LTP), a form of synaptic plasticity that is thought to contribute to learning and memory, involves a novel signal transduction pathway that is nonfunctional in comparable mice housed conventionally. This environmentally gated signaling pathway, which rescues defective LTP induction in adolescent Ras-GRF knockout mice, consists of NMDA glutamate receptor activation of p38, a MAP kinase that does not contribute to LTP in mice housed conventionally. Interestingly, the same exposure to environmental enrichment does not have this effect in adult mice. CONCLUSIONS: This study reveals a new level of cell signaling control whereby environmental factors gate the efficacy of a specific signaling cascade to control how LTP is induced in adolescent animals. The suppression of this gating mechanism in mature animals represents a new form of age-dependent decline in brain plasticity.  相似文献   

15.
16.
The aspartic proteinase cathepsin E (CatE) has been implicated in Ag processing. In this study we report that CatE expression is negatively regulated by the MHC class II transactivator (CIITA). CIITA-deficient murine and human B cells expressed greater CatE than wild-type B cells, whereas overexpression of CIITA in a human gastric carcinoma cell line, AGS, resulted in decreased CatE mRNA and protein. AGS cells expressing CIITA also exhibited decreased processing of OVA Ag. Inhibition of CatE expression is specific to the type III CIITA isoform and maps to the acidic and proline/serine/threonine-rich (PST) protein domains of CIITA. We found that CatE expression is inducible by PU.1 and p300, and that this induction can be reversed by CIITA. These findings demonstrate a novel phenomenon: regulation of CatE Ag processing by CIITA in an isoform-dependent manner.  相似文献   

17.
Alzheimer's disease (AD) is a neurodegenerative disease resulting in progressive cognitive decline. Amyloid plaque deposits consisting specifically of β-amyloid peptides that have formed fibrils displaying β-pleated sheet conformation are associated with activated microglia and astrocytes, are colocalized with C1q and other complement activation products, and appear at the time of cognitive decline in AD. Amyloid precursor protein (APP) transgenic mouse models of AD that lack the ability to activate the classical complement pathway display less neuropathology than do the APPQ+/+ mice, consistent with the hypothesis that complement activation and the resultant inflammation may play a role in the pathogenesis of AD. Further investigation of the presence of complement proteins C3 and C4 in the brain of these mice demonstrate that both C3 and C4 deposition increase with age in APPQ+/+ transgenic mice, as expected with the age-dependent increase in fibrillar β-amyloid deposition. In addition, while C4 is predominantly localized on the plaques and/or associated with oligodendrocytes in APPQ+/+ mice, little C4 is detected in APPQ−/− brains consistent with a lack of classical complement pathway activation because of the absence of C1q in these mice. In contrast, plaque and cell associated C3 immunoreactivity is seen in both animal models and, surprisingly, is higher in APPQ−/− than in APPQ+/+ mice, providing evidence for alternative pathway activation. The unexpected increase in C3 levels in the APPQ−/− mice coincident with decreased neuropathology provides support for the hypothesis that complement can mediate protective events as well as detrimental events in this disease. Finally, induced expression of C3 in a subset of astrocytes suggests the existence of differential activation states of these cells.  相似文献   

18.
19.
A rat kidney epithelial cell line expressing the rat neurokinin-1 receptor (NK-1 R) was used to investigate the relationship between receptor phosphorylation and desensitization. Substance P (SP) maximally stimulated cellular inositol 1,4,5-trisphosphate (IP3) production 14-fold within 3 s, after which cellular IP3 levels rapidly diminished to near basal levels in the continuing presence of SP. SP also caused concentration-dependent phosphorylation of the NK-1R, and this effect was blocked by a receptor antagonist. Stimulation with 100 nM SP for as little as 2 s resulted in 90% desensitization of the receptor to restimulation by SP, and near-maximal receptor phosphorylation was observed at 5 s. Receptor desensitization was not affected by agents that affect protein kinase A. Phorbol 12-myristate 13-acetate (PMA) also caused phosphorylation and desensitization of the receptor but with slower kinetics and to a lesser extent than SP. PMA- but not SP-induced NK-1 R desensitization and phosphorylation were abolished by the protein kinase C inhibitor bisindolylmaleimide 1. The concentration-response curves for SP-stimulated IP3 signaling and desensitization were similar, but the curve for NK-1R phosphorylation was shifted to the right and was steeper, suggesting that the relationship between desensitization and phosphorylation is complex. These results show that both rapid homologous and rapid heterologous NK-1R desensitizations may be mediated by receptor phosphorylation but occur via distinct mechanisms with different kinetics and efficacies.  相似文献   

20.
Substance P (SP) enhances antigen-dependent T cell IFN-gamma production. It was determined if a T cell neurokinin-1 receptor (NK-1R) was critical for IFN-gamma regulation. T cells from schistosome-infected mice were mixed with splenocytes from uninfected NK-1R knockout (KO) animals. Thus only the schistosome egg antigen-specific T cells expressed NK-1R. The cells were cultured 18 h with or without SP. SP enhanced antigen-induced IFN-gamma production fourfold without affecting IL-4 or IL-5 secretion. NK-1R inhibitor blocked this stimulation. Neither purified T cells nor naive KO splenocytes cultured alone responded to antigen. To further define the importance of T cell NK-1R, we developed a T cell-selective NK-1R KO mouse by reconstituting T cell-deficient Rag mice with NK-1R KO T cells. These mice challanged with schistosomiasis developed abnormal liver granulomas. Granuloma size was smaller in T cell-selective NK-1R KO mice compared with granulomas in Rag reconstituted with normal T cells. Splenocytes and granuloma cells from NK-1R KO mice made less IFN-gamma. The mice also made less IgG2a. Thus T cell NK-1R is important for IFN-gamma regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号