首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Three macronuclear genes encoding putative nuclear protein kinases of the ciliate Euplotes octocarinatus syngen 1 were isolated and sequenced. All three deduced gene products share significant properties with a group of recently identified nuclear serine/threonine protein kinases named Ndr. The three predicted proteins contain the twelve conserved catalytic subdomains of protein kinases and 22 near universally-conserved amino acids residues that are characteristic of serine/threonine protein kinases. In addition, there is an approximately 30 amino acid-peptide insertion between subdomains VII and VIII that contains a potential nuclear localization signal. Sequence analysis suggests that expression of the Eondr2 gene requires a + 1 programmed translational frameshift for its translation. Comparison of the deduced EoNdr2 with other known Ndr protein kinases implies that a + 1 ribosomal frameshift occurs at the motif AAATAA.  相似文献   

3.
The Tec1 and Tec2 transposons of the ciliate Euplotes crassus carry a gene for a tyrosine-type site-specific recombinase. The expression of the Tec2 gene apparently uses a programmed +1 frameshift. To test this hypothesis, we first examined whether this gene has evolved under purifying selection in Tec1 and Tec2. Each element carries three genes, and each has evolved under purifying selection for the function of its encoded protein, as evidenced by a dearth of nonsynonymous changes. This distortion of divergence is apparent in codons both 5' and 3' of the frameshift site. Thus, Tec2 transposons have diverged from each other while using a programmed +1 frameshift to produce recombinase, the function of which is under purifying selection. What might this function be? Tyrosine-type site-specific recombinases are extremely rare in eukaryotes, and Tec elements are the first known eukaryotic type II transposons to encode a site-specific recombinase. Tec elements also encode a widespread transposase. The Tec recombinase might function in transposition, resolve products of transposition (bacterial replicative transposons use recombinase or resolvase to separate joined replicons), or provide a function that benefits the ciliate host. Transposons in ciliated protozoa are removed from the macronucleus, and it has been proposed that the transposons provide this "excisase" activity.  相似文献   

4.
5.
编程性核糖体移码(programmed ribosomal frameshifting,PRF)广泛存在于生命进化谱系的各个分支,是一种翻译水平上的基因表达调控方式。单细胞真核生物游仆虫(Euplotes)中不仅PRF基因比例高,而且移码类型有+1和+2位两种。本研究从基因组水平对八肋游仆虫(E.octocarinatus)中的+2 PRF基因进行了鉴定,比较分析+1及+2 PRF基因中可能的调控元件。为了探讨游仆虫中滑动序列对移码类型的影响,克隆了八肋游仆虫的+1 PRF基因——η微管蛋白基因,将其构建到含绿色荧光蛋白报告基因的游仆虫大核人工染色体中,转染游仆虫细胞,通过检测GFP的表达来确定不同滑动序列突变体对应的移码类型。结果表明,滑动序列的改变能使游仆虫+1 PRF转变为+2 PRF,且这种移码类型的改变与滑动序列第1个密码子编码何种氨基酸无关。本研究揭示了滑动序列对游仆虫中识别+1和+2位的编程性核糖体移码具有关键作用。  相似文献   

6.
W Wang  R Skopp  M Scofield    C Price 《Nucleic acids research》1992,20(24):6621-6629
We have identified two 1.6 kb macronuclear DNA molecules from Euplotes crassus that hybridize to the alpha subunit of the Oxytricha telomere protein. We have shown that one of these molecules encodes the 51 kDa Euplotes telomere protein while the other appears to encode a homolog of the telomere protein. Although this homolog clearly differs in sequence from the Euplotes telomere protein, the two proteins share extensive amino acid sequence identity with each other and with the alpha subunit of the Oxytricha telomere protein. In all three proteins 35-36% of the amino acids are identical, while 54-56% are similar. The most extended regions of sequence conservation map within the N-terminal section; this section has been shown to comprise the DNA-binding domain in the Euplotes telomere protein. Our findings suggest that some of the conserved amino acids may be involved in DNA recognition and binding. The gene encoding the telomere protein homolog contains two introns; one of these introns is only 24 bp in length. This is the smallest mRNA intron reported to date.  相似文献   

7.
A programmed translational frameshift similar to frameshifts in retroviral gag-pol genes and bacterial insertion elements was found to be strongly conserved in tail assembly genes of dsDNA phages and to be independent of sequence similarities. In bacteriophage lambda, this frameshift controls production of two proteins with overlapping sequences, gpG and gpGT, that are required for tail assembly. We developed bioinformatic approaches to identify analogous -1 frameshifting sites and experimentally confirmed our predictions for five additional phages. Clear evidence was also found for an unusual but analogous -2 frameshift in phage Mu. Frameshifting sites could be identified for most phages with contractile or noncontractile tails whose length is controlled by a tape measure protein. Phages from a broad spectrum of hosts spanning Eubacteria and Archaea appear to conserve this frameshift as a fundamental component of their tail assembly mechanisms, supporting the idea that their tail genes share a common, distant ancestry.  相似文献   

8.
9.
ABSTRACT. Following mating or conjugation, the hypotrichous ciliate Euplotes crassus undergoes a massive genome reorganization process. While the nature of the rearrangement events has been well studied, little is known concerning proteins that carry out such processes. As a means of identifying such proteins, differential screening of a developmental cDNA library, as well as construction of a cDNA subtraction library, was used to isolate genes expressed only during sexual reproduction. Five different conjugation-specific genes have been identified that are maximally expressed early in conjugation, during the period of micronuclear meiosis, which is just prior to macronuclear development and the DNA rearrangement process. All five genes are retained in the mature macronucleus. Micronuclear, macronuclear, and cDNA clones of one gene ( conZ47 ) have been sequenced, and the results indicate that the gene encodes a putative DNA binding protein. In addition, the presence of an internal eliminated sequence in the micronuclear copy of the conZ47 gene indicates that this conjugation-specific gene is transcribed from the old macronucleus.  相似文献   

10.
11.
Differential expression of linker histone variants in Euplotes crassus   总被引:1,自引:0,他引:1  
Ray S  Jahn C  Tebeau CM  Larson MN  Price CM 《Gene》1999,231(1-2):15-20
  相似文献   

12.
MOTIVATION: In an effort to identify potential programmed frameshift sites by statistical analysis, we explore the hypothesis that selective pressure would have rendered such sites underabundant and underrepresented in protein-coding sequences. We developed a computer program to compare the frequencies of k-length subsequences of nucleotides with the frequencies predicted by a zero order Markov chain determined by the codon bias of the same set of sequences. The program was used to calculate and evaluate the distribution of 7-base oligonucleotides in the 6000+ putative protein-coding sequences of S. cerevisiae preliminary to the laboratory testing of the most highly underrepresented oligos for frameshifting efficiency. RESULTS: Among the most significant results is the finding that the heptanucleotides CUU-AGG-C and CUU-AGU-U, sites of the programmed +1 translational frameshifts required for the production in yeast of actin filament-binding protein ABP140 and telomerase subunit EST3, respectively, rank among the least represented of phase I heptanucleotides in the coding sequences of S. cerevisiae. Laboratory experiments demonstrated that other underrepresented heptanucleotides identified by the program, for example GGU-CAG-A, are also prone to significant translational frameshifting, suggesting the possibility that genes containing other underrepresented heptamers may also encode transframe products. AVAILABILITY: The program is available for download from http://www.gesteland.genetics.utah.edu/freqAnalysis SUPPLEMENTARY INFORMATION: Complete results from the analysis of S. cerevisiae are available on http://www.gesteland.genetics.utah.edu/freqAnalysis  相似文献   

13.
During the process of macronuclear development, the ciliate Euplotes crassus undergoes extensive programmed DNA rearrangement. Previous studies have identified a gene, H3(P), that is expressed only during sexual reproduction and is predicted to encode a variant histone H3 protein. In the current study, an antiserum to the H3(P) protein has been generated. The antiserum has been used to demonstrate that H3(P) is maximally expressed during the polytene chromosome stage of macronuclear development. Moreover, H3(P) is localized to the developing macronucleus, but not other nuclei present within the cell. Additional studies indicate that at least one additional variant histone is also present within the developing macronucleus. The results indicate that there are significant changes in nucleosome composition within the developing macronucleus, and provide additional support for the notion that changes in chromatin structure play a role in the DNA rearrangement processes of macronuclear development. genesis 26:179-188, 2000.  相似文献   

14.
Slipped-strand mispairing (SSM) may play an major role in repetitive DNA sequence evolution by generating large numbers of short frameshift mutations within simple tandem repeats. Here we examine the frequency and size spectrum of frameshifts generated within poly-CA/TG sequences inserted into bacteriophage M13 in Escherichia coli hosts. The frequency of detectable frameshifts within a 40 bp tract of poly-CA/TG is greater than one percent and increases more than linearly with length, being lower by a factor of four in a 22 bp target sequence. The frequency increases more than 13-fold in mutL and mutS host cells, suggesting that a high proportion of frameshift events are normally repaired by methyl-directed mismatch repair. Of the 87 sequenced frameshifts in this study, 96% result from deletion or insertion of only or two 2 bp repeat units. The most frequent events are 2 bp deletions, 2 bp insertions, and 4 bp deletions, the relative frequencies of these events being about 18:6:1.  相似文献   

15.
编程性翻译移码是mRNA翻译为多肽链时核糖体沿mRNA正向或反向滑动1个碱基才能表达出1个完整多肽链的现象. 人的肽链释放因子eRF1对HIV-1病毒的编程性-1移码有直接的影响. 而且在频繁发生编程性+1移码的单细胞真核生物游仆虫中,肽链释放因子eRF1对编程性移码也有明显的影响. 为进一步研究eRF1中影响编程性翻译移码的关键序列及调控机理,本研究将含有不同终止密码子的移码序列和已报道的游仆虫移码基因Ndr2分别插入双荧光素酶报告基因中,成功建立了可在酵母中进行研究的编程性移码报告检测体系. 利用游仆虫肽链释放因子Eo-eRF1b的N结构域和酵母肽链释放因子Sc eRF1的MC结构域构建了杂合肽链释放因子(Eo/Sc eRF1),检测Eo-eRF1b N结构域中的不同突变位点对移码效率的影响. 结果表明,游仆虫肽链释放因子eRF1b中YCF区的突变能明显促进含终止密码UAA的移码序列的移码,推测这可能是由于eRF1突变体降低了对UAA的识别所导致. 此外,杂合肽链释放因子Eo/Sc eRF1能够有效地提高移码基因Ndr2的移码效率. eRF1b中YCF区的突变同样能明显促进 Ndr2的移码. 因此, 游仆虫肽链释放因子YCF区的特殊序列可能是这种生物中发生编程性移码频率较高的原因之一. 本研究为探讨纤毛虫编程性翻译移码调控机制提供了实验数据.  相似文献   

16.
17.
18.
Frameshift mutagenesis by eucaryotic DNA polymerases in vitro   总被引:23,自引:0,他引:23  
The frequency and specificity of frameshift errors produced during a single round of in vitro DNA synthesis by DNA polymerases-alpha, -beta, and -gamma (pol-alpha, -beta, and -gamma, respectively) have been determined. DNA polymerase-beta is the least accurate enzyme, producing frameshift errors at an average frequency of one error for each 1,000-3,000 nucleotides polymerized, a frequency similar to its average base substitution accuracy. DNA polymerase-alpha is approximately 10-fold more accurate, producing frameshifts at an average frequency of one error for every 10,000-30,000 nucleotides polymerized, a frequency which is about 2- to 6-fold lower than the average pol-alpha base substitution accuracy. DNA polymerase-gamma is highly accurate, producing on the average less than one frameshift error for every 200,000-400,000 nucleotides polymerized. This represents a more than 10-fold higher fidelity than for base substitutions. Among the collection of sequenced frameshifts produced by DNA polymerases-alpha and beta, both common features and distinct specificities are apparent. These specificities suggest a major role for eucaryotic DNA polymerases in modulating frameshift fidelity. Possible mechanisms for production of frameshifts are discussed in relation to the observed biases. One of these models has been experimentally supported using site-directed mutagenesis to change the primary DNA sequence of the template. Alteration of a pol-beta frameshift hotspot sequence TTTT to CTCT reduced the frequency of pol-beta-dependent minus-one-base errors at this site by more than 30-fold, suggesting that more than 97% of the errors at the TTTT run involve a slippage mechanism.  相似文献   

19.
编程性翻译移码现象存在于病毒、原核生物和真核生物中。单细胞真核生物游仆虫基因组中含有的编程性翻译移码基因远远高于其他真核生物基因组。游仆虫中已经报道的编程性翻译移码基因的滑动序列特征为AAA-UAR-V,其上游都有SD(Shine-Dalgarno sequence)相似序列CAAGAA。同时,编程性移码的发生受肽链释放因子eRF1和tRNALys的影响。  相似文献   

20.
The translational apparatus very efficiently eliminates errors that would cause a spontaneous shift in frames. The probability of frameshifting can be increased dramatically by either cis or trans-acting factors. Programmed translational frameshift sites are cis-acting sequences that greatly increase the frequency of such errors, at least in part by causing a transient translational pause. Pausing during programmed +1 frameshifts occurs because of slow recognition of the codon following the last read in the normal frame. Frameshifting can also be elevated in strains carrying mutations in the homologous elongation factors EF-Tu in bacteria, and EF-1alpha in the yeast Saccharomyces cerevisiae. This phenotype implies that the factors contribute to frame maintenance. Because EF-Tu/EF-1alpha modulate the kinetics of decoding, it is possible that the frameshift suppressor forms of the factors transiently slow normal decoding, allowing spontaneous frameshifting to occur more efficiently, resulting in phenotypic suppression. We have used a set of frameshift reporter plasmids to test the effect of suppressor forms of EF-1alpha on constructs that differ widely in the efficiency with which they stimulate +1 shifting. When these results were compared to the effect of increased translational pausing, it was apparent that the mutations affecting EF-1alpha do not simply prolong the translational pause. Rather, they appear to generally increase the likelihood of frame errors, apparently by affecting the error correction mechanism of the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号