首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To determine the antibacterial spectrum and cytotoxic activities of serrulatane compounds from the Australian plant Eremophila neglecta. Methods and Results: Antimicrobial activities of serrulatane compounds 8,19‐dihydroxyserrulat‐14‐ene ( 1 ) and 8‐hydroxyserrulat‐14‐en‐19‐oic acid ( 2 ) were tested against Gram‐negative and Gram‐positive bacteria including human and veterinary pathogens and some multidrug‐resistant isolates. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of the compounds were determined by broth microdilution assay. Both compounds exhibited antibacterial activity against all Gram‐positive test strains. They showed antimycobacterial activity against isolates of Mycobacterium fortuitum and Mycobacterium chelonae. Of the five Gram‐negative bacteria tested, only Moraxella catarrhalis showed susceptibility to the compounds. Cytotoxic activities were tested in the Vero cell line. Compound 1 showed more activity than 2 in both antibacterial and cytotoxicity assays with cytotoxicity at concentrations similar to the MBC. Conclusions: Serrulatane compounds showed significant activity against medically important bacteria, with 1 exhibiting stronger antibacterial activity. However, they also displayed toxicity to mammalian cells. Significance and Impact of the Study: Serrulatanes are of interest as novel antibacterial compounds for use in biomedical applications; this study reports data obtained with a range of bacterial strains and mammalian cells, essential for assessing the capabilities and limitations of potential applicability of these compounds.  相似文献   

2.
Ecological samples rich in microbial diversity like cow dung, legume rhizosphere, fish waste and garden soil were used for isolation of chitosan-degrading microorganisms. Selected isolates were used for production of chitosanaseand food related bioactive compounds by conversion of biowaste. Production of glucosamine (Gln), N-acetylglucosamine (NAG), chitooligosaccharides (COS), antioxidants, antibacterial compounds and prebiotics was carried out by microbial fermentation of biowaste. The highest chitosanase activity (8 U/mL) was observed in Aspergillus sp. isolated from fish market waste and it could produce Gln and NAG while Streptomyces sp. isolated from garden soil was able to produce COS along with Gln and NAG. Radical scavenging activity was observed in culture supernatants of 35% of studied isolates, and 20% isolates secreted compounds which showed positive effect on growth of Bifidobacterium. Antibacterial compounds were produced by 40% of selected isolates and culture supernatants of two microbial isolates, Streptomyces zaomyceticus C6 and one of garden soil isolates, were effective against both gram positive and negative bacteria.  相似文献   

3.
Terrestrial actinobacteria have served as a primary source of bioactive compounds; however, a rapid decrease in the discovery of new compounds strongly necessitates new investigational approaches. One approach is the screening of actinobacteria from marine habitats, especially the members of the genus Streptomyces. Presence of this genus in a marine sponge, Haliclona sp., was investigated using culture‐dependent and ‐independent techniques. 16S rRNA gene clone library analysis showed the presence of diverse Streptomyces in the sponge sample. In addition to the dominant genus Streptomyces, members of six different genera were isolated using four different media. Five phylogenetically new strains, each representing a novel species in the genus Streptomyces were also isolated. Polyphasic study suggesting the classification of two of these strains as novel species is presented. Searching the strains for the production of novel compounds and the presence of biosynthetic genes for secondary metabolites revealed seven novel compounds and biosynthetic genes with unique sequences. In these compounds, JBIR‐43 exhibited cytotoxic activity against cancer cell lines. JBIR‐34 and ‐35 were particularly interesting because of their unique chemical skeleton. To our knowledge, this is the first comprehensive study detailing the isolation of actinobacteria from a marine sponge and novel secondary metabolites from these strains.  相似文献   

4.
Endophytic actinomycetes from Azadirachta indica A. Juss. were screened and evaluated for their anti-microbial activity against an array of pathogenic fungi and bacteria. A total of 55 separate isolates were obtained from 20 plants, and 60% of these showed inhibitory activity against one or more pathogenic fungi and bacteria. Actinomycetes were most commonly recovered from roots (54.5% of all isolates), followed by stems (23.6%), and leaves (21.8%). The dominant genus was Streptomyces (49.09% of all isolates), while Streptosporangium (14.5%), Microbispora (10.9%), Streptoverticillium (5.5%), Sacchromonospora sp. (5.5%), and Nocardia (3.6%) were also recovered. Streptomyces isolates AzR 006, 011, and 031 (all from roots) had acute activity against Pseudomonas fluorescens, while AzR027, 032, and 051 (also all from roots) showed activity against Escherichia coli. Meanwhile, an isolate of Nocardia sp. from leaves (AzL025) showed antagonism against Bacillus subtilis. Overall, 32 of the 55 were found to have broad spectrum significant antimicrobial activity, while about 4% of them showed strong and acute inhibition to pathogenic fungi and bacteria. Isolates of Streptomyces AzR031, 008, and 047, Nocardia sp. AzL025, and Streptosporangium sp. AzR 021 and 048 are of particular interest because they showed significant antagonistic activity against root pathogens, including Pythium and Phytophthora sp. Thus, many of the isolates recovered from A. indica in this study may be used in developing potential bio-control agents against a range of pathogenic fungi and bacteria and in the production of novel natural antimicrobial compounds. These results not only further our understanding of plant–microbe interactions but also indicate that there is an untapped resource of endophytic microorganisms that could be exploited in the biotechnological, medicinal, and agricultural industries.  相似文献   

5.
Thirty-four endophytic marine Actinomycetes isolates were recovered from the Egyptian marine sponge Latrunculia corticata, out of them 5 isolates (14.7 %) showed red single colonies on yeast-CzAPEK plates. Isolates under the isolation code NRC50 and NRC51 were observed with the strongest red biomass. After application of protoplast fusion between NRC50 and NRC51 isolates, 26 fusants were selected and produced widely different amounts of prodigiosin-like pigments (PLPs) on different fermentation media. Among them fusant NRCF69 produced 79 and 160.4 % PLPs more than parental strains NRC50 and NRC51, respectively. According to the analysis of 16S rDNA sequence (amplified, sequenced, and submitted to GenBank under Accession no. JN232405 and JN232406, respectively), together with their morphological and biochemical characteristics, parental strains NRC50 (P1) and NRC51 (P2) were identified as Streptomyces sp. and designated as Streptomyces sp. NRC50 and Streptomyces sp. NRC51. This study describes a low cost, effective production media by using peanut seed broth, sunflower oil broth or dairy processing wastewater broth alone, or supplemented with 0.5 % mannitol that supports the production of PLPs by the Streptomyces fusant NRCF69 under study (42.03, 40.11, 36.7 and 47 g L?1, respectively). PLPs compounds exhibited significant cytotoxic activities against three human cancer cell lines: colon cancer cell line (HCT-116), liver cancer cell line (HEPG-2) and breast cancer cell line (MCF-7) and antimycotic activity against clinical dermatophyte isolates of Trichophyton, Microsporum and Epidermophyton.  相似文献   

6.
Aims: The aim of the present study was to purify and characterize a natural antimicrobial compound from Bacillus sp. strain N associated with a novel rhabditid entomopathogenic nematode. Methods and Results: The cell‐free culture filtrate of a bacterium associated with a novel entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by column chromatography, and two bioactive compounds were isolated and their chemical structures were established based on spectral analysis. The compounds were identified as 3,4′,5‐trihydroxystilbene (1) and 3,5‐dihydroxy‐4‐isopropylstilbene (2). The presence of 3,4′,5‐trihydroxystilbene (resveratrol) is reported for the first time in bacteria. Compound 1 showed antibacterial activity against all the four test bacteria, whereas compound 2 was effective against the Gram‐positive bacteria only. Compounds 1 and 2 were active against all the five fungi tested and are more effective than bavistin, the standard fungicide. The antifungal activity of the compounds against the plant pathogenic fungi, Rhizoctonia solani is reported for the first time. Conclusions: Cell‐free extract of the bacterium and isolated stilbenes demonstrated high antibacterial activity against bacteria and fungi especially against plant pathogenic fungi. We conclude that the bacterium‐associated EPN are promising sources of natural bioactive secondary metabolites. Significance and Impact of the Study: Stilbene compounds can be used for the control of fungi and bacteria.  相似文献   

7.
The present study was designed to investigate the Puducherry coast of the Bay of Bengal, India for the diversity of bioactive actinomycetes. A total of 50 actinomycete strains were isolated from the marine sediments and most of the strains were belongs to Streptomyces. These strains were identified by means of morphological physiological, biochemical and cultural characteristics. The isolates were subjected to shake flask fermentation and the secondary metabolites were extracted with ethyl acetate and screened for cytotoxicity, hemolytic activity and antimicrobial activity against selected bacterial and fungal pathogens. The cytotoxic activity was evaluated using HeLa cell lines by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole (MTT) assay, hemolytic activity on mouse erythrocytes and the antifungal activity was evaluated by MTT cytotoxic assay against Aspergillus niger, Aspergillus fumigatus and Candida albicans. The antibacterial activity was studied against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Klebsiella pneumoniae. The cytotoxicity and antimicrobial activity of secondary metabolite was found to be concentration dependent and nearly 24% of isolates showed significant antimicrobial, hemolytic and cytotoxic activity. The results of our study indicate the diversity and bioactive potential of marine actinomycetes isolated in the Puducherry coast.  相似文献   

8.
This study reports the isolation of 63 endophytic fungal isolates from two traditional medicinal plants, Ocimum sanctum and Sapindus detergens from different locations of Amritsar, India. The functional characterization of the fungi for their ability to produce anti bacterial and anti cancer agent was carried out. Sixteen strains were characterized at molecular level by sequencing the amplified ITSI-5.8-ITSII region of rDNA. The phylogenetic tree resolved the endophytic fungi into different clades. The fungal endophytes belonging to order Pleosporales (Alternaria sp., Phoma sojicola and Exserohilum sp.) were functionally versatile as they produced diverse biomolecules including antibacterial agent active against Mycobacterium smegmatis, as well as cytotoxic activity against different human cancer cell lines of lung, ovary, breast, prostrate, neuroblastoma and colon.  相似文献   

9.
The present work deals with isolation of Streptomyces associated with marine sponges and its bioactive potential. Streptomyces sp. were isolated from the marine sponges Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. From the initial screening, 94 cultures of Streptomyces were obtained and from these 58 cultures exhibited antagonism against bacteria, 36 strains against fungi and 27 strains exhibited broad spectrum activity against both. The submerged culture extracts of the 58 anti-bacterial isolates were analysed and of these 58 strains, 37 strains showed positive inhibition against Bacillus subtilis, 43 against Staphylococcus aureus, 10 against Vibrio cholerae and 10 against Escherichia coli. The antifungal activities of the 36 strains were also evaluated and 27 strains showed positive inhibition against Aspergillus niger, 23 against Saccharomyces cerevisiae and 16 against Candida albicans. The production of polyene substances from the active extracts was confirmed by UV spectral analysis by the absorbance peaks that ranged from 225 to 262 nm and the TLC (R f values) ranging from 0.40 to 0.78. The results indicate that Streptomyces strains isolated from marine sponges produce potential antibacterial, antifungal and broad spectrum antibiotic compounds.  相似文献   

10.
Aims: To evaluate the diversity and antimicrobial activity of bacteria from the marine sponges Suberites carnosus and Leucosolenia sp. Methods and Results: Two hundred and thirty‐seven bacteria were isolated from the sponges S. carnosus (Demospongiae) and Leucosolenia sp. (Calcarea). Isolates from the phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria were obtained. Isolates of the genus Pseudovibrio were dominant among the bacteria from S. carnosus, whereas Pseudoalteromonas and Vibrio were the dominant genera isolated from Leucosolenia sp. Approximately 50% of the isolates from S. carnosus displayed antibacterial activity, and c. 15% of the isolates from Leucosolenia sp. demonstrated activity against the test fungal strains. The antibacterial activity observed was mostly from Pseudovibrio and Spongiobacter isolates, while the majority of the antifungal activity was observed from the Pseudoalteromonas, Bacillus and Vibrio isolates. Conclusions: Both sponges possess a diverse range of bioactive and potentially novel bacteria. Differences observed from the sponge‐derived groups of isolates in terms of bioactivity suggest that S. carnosus isolates may be a better source of antibacterial compounds, while Leucosolenia sp. isolates appear to be a better source of antifungal compounds. Significance and Impact of the Study: This is the first study in which cultured bacterial isolates from the marine sponges S. carnosus and a Leucosolenia sp. have been evaluated for their antibacterial activity. The high percentage of antibacterial isolates from S. carnosus and of antifungal isolates from Leucosolenia sp. suggests that these two sponges may be good sources for potentially novel marine natural products.  相似文献   

11.
Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3‐hydroxy‐4‐methoxybenzamide ( 9 ) and 2,3‐dihydro‐2,2‐dimethyl‐4(1H)‐quinazolinone ( 15 ) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine ( 2 ) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds.  相似文献   

12.
In this study, strain Streptomyces sp. Act4Zk was isolated based on a method developed for the isolation of myxobacteria. Due to the low efficiency of the majority of conventional DNA extraction techniques, for molecular identification of the strain Streptomyces sp. Act4Zk, a new technique for DNA extraction of Actinobacteria was developed. In order to explore potential bioactivities of the strain, extracts of the fermented broth culture were prepared by an organic solvent (i.e. ethyl acetate) extraction method using. These ethyl acetate extracts were subjected to HPLC fractionation against standard micro-organisms, followed by LC/MS analysis. Based on morphological, physiological, biochemical and 16S rRNA gene sequence data, strain Streptomyces sp. Act4Zk is likely to be a new species of Streptomyces, close to Streptomyces genecies and Streptomyces roseolilacinus. Antimicrobial assay indicated high antifungal activity as well as antibacterial activity against Mycobacterium smegmatis and Gram-positive bacteria for the new strain. HPLC and LC/MS analyses of the extracts led to the identification of three different compounds and confirmed our hypothesis that the interesting species of the genus Streptomyces being a good producer of staurosporine and some derivatives.  相似文献   

13.
Studies on antagonistic marine actinomycetes from the Bay of Bengal   总被引:3,自引:0,他引:3  
Screening of 26 marine sediment samples near 9 islands of the Andaman Coast of the Bay of Bengal resulted in the isolation of 88 isolates of actinomycetes. On the basis of sporophore morphology and structure of the spore chain, 64 isolates were assigned to the genus Streptomyces, 8 isolates to the genus Micromonospora, 5 to the genus Nocardia, 7 to the genus Streptoverticilium and 4 to the genus Saccharopolyspora. Among 64 Streptomyces spp., 44 isolates showed antibacterial activity and 17 isolates showed antifungal activity. Three isolates showed very promising antagonistic activities against multi-drug resistant pathogens.  相似文献   

14.
A series of novel quinazolinone derivatives containing a substituted amino moiety were synthesized, evaluated for their cytotoxic and antibacterial activities. The results of MTT assay showed that all synthesized target compounds 5A  –  5O showed potent cytotoxicity against SGC‐7901 (IC50, 0.72 – 1.41 μm ). Moreover, the compounds 5D , 5I , and 5K showed better selectivity as compared with positive controls pemetrexed and MTX due to weak cytotoxicity against normal tissue cell line HUVSMC. Among synthesized compounds, the compounds 5E , 5J , 5L , and 5N showed broad‐spectrum cytotoxic activities against at least four cancer cell lines at a micromolar level. The results of antibacteria evaluation revealed that all synthesized compounds showed good to moderate antibacterial activities against Gram‐negative bacteria Escherichia coli. Among them, the MIC values of the compounds 5C , 5F , and 5M were 0.31 μg/mL.  相似文献   

15.
The aim of this study was to screen Streptomycetes isolates with antimicrobial and antiviral activity, in a search for new metabolites. The isolates were obtained from a composting process, and identified based on morphological characteristics and molecular biological methods. The antimicrobial activity was determined using the double-layer agar method against 53 test organisms (bacteria, yeasts, and filamentous fungi). All isolates were grown in submerged culture, in mineral salts-starch-casein (SC) broth and ISP2 media, and the filtrate cultures were used in the assays for antibacterial and antiviral activity. Bovine Herpes virus (BoHV-I) was used for the antiviral activity. The morphological and molecular characteristics confirmed that all 25 isolates belonged to the genus Streptomyces. In the assay for antimicrobial activity, 80% of the Streptomyces isolates were able to inhibit at least one of the test organisms. Of these, 80% were active against bacteria and 45% against fungi. Eight of the isolates showed a broad spectrum of inhibitory activity; of these, the isolate Streptomyces spp. 1S was able to inhibit 46 of the test organisms, and, most importantly, the 16 Gram-negative strains were inhibited. Of the 25 isolates, 44.4% of the isolates were able to grow and produce bioactive metabolites when grown in submerged culture. Four extracts showed a cytopathic effect in 10 CCID50 MDBK cell, even though no viricidal effect was observed. The results obtained with these isolates indicated good biotechnological potential of these Streptomyces strains.  相似文献   

16.
A screening for antibacterial antibiotics was carried out with psychrophilic microorganisms. The most active microorganism, a soil actinomycete, was selected and characterized to be a facultative psychrophile, Streptomyces sp. No. 81. This strain was found to produce antibiotic(s) in the culture fluid only at low temperature cultivation below 20°C but not at moderate temperature. Mycelial growth at low temperature seemed to be indispensable for the antibiotic production. The antibiotic produced by Streptomyces sp. No. 81 was isolated and characterized. It appeared that the antibiotic had the selective toxicity against several Gram-positive bacteria. From the comparative studies with several known antibiotics, the antibiotic appears to be a new compound derived from the new metabolic routes involving temperature-sensitive mechanisms.  相似文献   

17.
【背景】植物内生链霉菌Streptomyces sp.SAT1分离自药用植物荠苨根部,对多种植物病原真菌和病原细菌具有强抑菌活性,在农林业生物防治领域应用潜力巨大。【目的】揭示该菌在不同培养基条件下的抑菌效果和抑制细菌的活性物质类型,为该菌生物防治应用提供理论基础和技术支撑。【方法】通过测定发酵液和菌体萃取物的抑菌活性,研究培养基成分对抑菌活性物质生物合成的影响;选择抑制细菌活性高和无抑菌活性的培养基进行发酵,通过转录组测序分析差异表达基因的功能,并利用紫外吸收光谱和UPLC-MS/MS鉴定活性物质的成分。【结果】所选用的7种链霉菌常用发酵培养基中,无论发酵液还是菌体萃取物,TSB、GS和R5培养基无抑制细菌活性;PDB、ISP2、MS和H有较强的抑菌活性。对PDB、ISP2和TSB发酵菌体进行转录组测序分析,共发现差异表达基因3 567个,KEGG富集分析发现差异基因多集中在global and overview maps、氨基酸代谢和碳水化合物代谢等通路上,而且与TSB比,PDB和ISP2分别有18个和5个上调基因定位于moenomycin类物质的生物合成基因簇上。以标准品为对照,...  相似文献   

18.
Worldwide efforts are underway to develop new antimicrobial agents against bacterial resistance. To identify new compounds with a good antimicrobial profile, we designed and synthesized two series of small cationic antimicrobial peptidomimetics (1–8) containing unusual arginine mimetics (to introduce cationic charges) and several aromatic amino acids (bulky moieties to improve lipophilicity). Both series were screened for in vitro antibacterial activity against a representative panel of Gram‐positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram‐negative (Escherichia coli and Klebsiella pneumoniae) bacterial strains, and Candida albicans. The biological screening showed that peptidomimetics containing tryptophan residues are endowed with the best antimicrobial activity against S. aureus and S. epidermidis in respect to the other synthesized derivatives (MIC values range 7.5–50 µg/ml). Moreover, small antimicrobial peptidomimetics derivatives 2 and 5 showed an appreciable activity against the tested Gram‐negative bacteria and C. albicans. The most active compounds (1–2 and 5–6) have been tested against Gram‐positive established biofilm, too. Results showed that the biofilm inhibitory concentration values of these compounds were never up to 200 µg/ml. The replacement of tryptophan with phenylalanine or tyrosine resulted in considerable loss of the antibacterial action (compounds 3–4 and 7–8) against both Gram‐positive and Gram‐negative bacterial strains. Furthermore, by evaluating hemolytic activity, the synthesized compounds did not reveal cytotoxic activities, except for compound 5. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
A total of 445 actinomycete isolates were obtained from 16 medicinal plant rhizosphere soils. Morphological and chemotaxonomic studies indicated that 89% of the isolates belonged to the genus Streptomyces, 11% were non-Streptomycetes: Actinomadura sp., Microbispora sp., Micromonospora sp., Nocardia sp, Nonomurea sp. and three isolates were unclassified. The highest number and diversity of actinomycetes were isolated from Curcuma mangga rhizosphere soil. Twenty-three Streptomyces isolates showed activity against at least one of the five phytopathogenic fungi: Alternaria brassicicola, Collectotrichum gloeosporioides, Fusarium oxysporum, Penicillium digitatum and Sclerotium rolfsii. Thirty-six actinomycete isolates showed abilities to produce indole-3-acetic acid (IAA) and 75 isolates produced siderophores on chrome azurol S (CAS) agar. Streptomyces CMU-PA101 and Streptomyces CMU-SK126 had high ability to produced antifungal compounds, IAA and siderophores.  相似文献   

20.
A study was carried out to test direct and indirect antagonistic effect against Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceri (FOC), and plant growth-promoting (PGP) traits of bacteria isolated from rhizosphere soils of chickpea (Cicer arietinum L.). A total of 40 bacterial isolates were tested for their antagonistic activity against FOC and of which 10 were found to have strong antagonistic potential. These were found to be Streptomyces spp. (five isolates) and Bacillus spp. (five isolates) in the morphological and biochemical characterisation and 16S rDNA analysis. Under both greenhouse and wilt sick field conditions, the selected Streptomyces and Bacillus isolates reduced disease incidence and delayed expression of symptoms of disease, over the non-inoculated control. The PGP ability of the isolates such as nodule number, nodule weight, shoot weight, root weight, grain yield and stover yield were also demonstrated under greenhouse and field conditions over the non-inoculated control. Among the ten isolates, Streptomyces sp. AC-19 and Bacillus sp. BS-20 were found to have more potential for biocontrol of FOC and PGP in chickpea. This investigation indicates that the selected Streptomyces and Bacillus isolates have the potential to control Fusarium wilt disease and to promote plant growth in chickpea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号