首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermodynamic and spectroscopic properties of the species formed by dimethyltin(IV) cation with L-cysteine (cys) were studied by potentiometric, calorimetric, UV and NMR investigations in aqueous solution. The resulting speciation model showed the formation of five complex species: (CH(3))(2)Sn(cys)H(+), (CH(3))(2)Sn(cys)(0), (CH(3))(2)Sn(cys)OH(-), (CH(3))(2)Sn(cys)(2)H(-), (CH(3))(2)Sn(cys)(2)(2-). The stability and the formation percentages, for the mononuclear mixed species in particular, are very high, in a wide pH range. Thermodynamic parameters indicate that the enthalpy values are exothermic and the enthalpic contribution to the stability is higher than entropic one. Individual UV spectra of cys and dimethyltin(IV)-cys species were calculated. Spectroscopic results of UV and (1)H NMR investigations fully confirm the speciation model. The structures calculated from NMR investigations show that all the species have an eq-(CH(3))(2)-tbp structure.  相似文献   

2.
The acid base behavior of phytate has been studied (at t=25 degrees C by potentiometry, ISE-H+ glass electrode) in NaNO3aq at different ionic strengths (0.1 < or = I/mol L(-1) < or = 1.0). The interactions with copper(II) were investigated in the same experimental conditions in different metal to ligand (Phy) ratios (1:1 < or = Cu2+ :Phy < or = 4:1), by using both ISE-H+ and ISE-Cu2+ electrodes. Phytate acid base behavior in sodium nitrate is very similar to that in sodium chloride, previously investigated. In the experimental conditions adopted, the formation of three CuiHjPhy(12-2i-j)- species is observed: the mononuclear CuH4Phy6- and CuH5Phy5-, and the dinuclear Cu2H5Phy3-. Analysis of complex formation constants at different ionic strengths reveals that both ISE-H+ and ISE-Cu2+ electrodes gave, within the experimental error, analogous values. Dependence of complex formation constants on ionic strength was modeled by EDH (Extended Debye-Hückel) and SIT (Specific ion Interaction Theory) equations. The sequestering ability of phytate toward copper(II) has been evaluated by the calculation of pL50 (the total ligand concentration, as -log CL, able to bind 50% of metal cation), an empirical parameter already proposed for an objective "quantification" of this ability. A thorough analysis of literature data on phytate-copper(II) complexes has been performed.  相似文献   

3.
Abstract

The noncovalent interactions of phytate (Phy6-) with biogenic amines were studied potentiometrically in aqueous solution, at t= 25°C. Several species are formed in the different H+-Phy6--amine (A) systems, which have the general formula Ap(Phy)Hq(12-q)-, with p ≤ 3 and 6 ≤ q ≤ 10. The stability of these species is strictly dependent on the charges involved in the formation equilibria. For the equilibrium pHiAi+ + Hj(Phy)(12-j)- = Ap(Phy)Hq(12q)-, (q = pi + j)we found the relationship logK= aζ (ζ is the charge product of reactants), where a= 0.35(0.03, valid for all the amines; this roughly indicates an average free energy contribution per bond -ΔG0 = 4.0 ± 0.2 kJ mol-1. A slightly more sophisticated equation is also proposed for predicting the stability of these species. Owing to the quite high (partially protonated) phytate charge, the stability of Ap(Phy)Hq(12-q)- species is quite high, making phytate a strong amine sequestering agent in a wide pH range.  相似文献   

4.
The interaction of native DNA with dimethyltin(IV) species   总被引:1,自引:0,他引:1  
The reaction of aqueous native DNA (calf thymus) with the solvated organotin(IV) species [(CH3)2SnCl2(C2H5OH)n], as well as with [(CH3)2Sn(OH)(H2O)n]+ and (CH3)2Sn(OH)2 (i.e., the hydrolysis products of aqueous (CH3)2SnCl2 at pH approximately 5 and pH approximately 7.4 respectively), was investigated by 119Sn M?ssbauer spectroscopy. The addition of [(CH3)2SnCl2(C2H5OH)n] to DNA yielded a solid product, possibly (CH3)2Sn(DNA phosphodiester)2, where the environment of the tin atom is trans-octahedral with linear CSnC skeleton, and the equatorial atoms may consist of oxygen or nitrogen from water as well as from the nucleic acid constituents. No interaction with DNA apparently takes place due to hydrolyzed dimethyltin(IV) species, which occur in aqueous phases at approximate physiological pH values. The reaction pathway is then assumed to require weakly solvated, easily dissociable species such as [(CH3)2SnCl2(C2H5OH)n], which would imply in vivo reactivity of cellular DNA with organotins from hydrophobic sites.  相似文献   

5.
Five new organotin(IV) molecules with the heterocyclic thioamides; 2-mercaptobenzothiazole (Hmbzt), 5-chloro-2-mercaptobenzothiazole (Hcmbzt), 3-methyl-2-mercaptobenzothiazole (mmbzt) and 2-mercaptonicotinic acid (H(2)mna) of formulae [(n-C(4)H(9))(2)Sn(mbzt)(2)] (1), [(C(6)H(5))(2)Sn(mbzt)(2)] (2), [(CH(3))(2)Sn(cmbzt)(2)].1.7(H(2)O)] (3), [(n-C(4)H(9))(2)SnCl(2)(mmbzt)(2).(CH(2)Cl(2))] (4) and [[(C(6)H(5))(3)Sn](2)(mna).[(CH(3))(2)CO]] (5) have been synthesized and characterized by elemental analysis, 1H-, 13C-NMR, FT-IR and M?ssbauer spectroscopic techniques. Crystal structures of molecules 1, 3 and 5 have been determined by X-ray diffraction at 173(1) K (1 and 5) and 293(2) K (3). Compound 1 C(22)H(26)N(2)S(4)Sn, is monoclinic, space group C2/c, a=44.018(2), b=8.8864(5), c=12.8633(7) A, beta=104.195(5) degrees, Z=8. Compound 3 is also monoclinic, space group P2(1)/c and a=17.128(2) A, b=17.919(2) A, c=7.3580(10) A, beta=98.290(10) degrees, Z=4. In both molecules 1 and 3, two carbon atoms from aryl groups, two sulfur and two nitrogen atoms from thione ligands form a distorted octahedral geometry around tin(IV) with trans-C(2), cis-N(2), cis-S(2) configurations. Compound 5 C(45)H(39)NO(3)SSn(2) is monoclinic, space group P2(1)/n, a=9.1148(2) A, b=29.2819(6), c=15.5556(4) A, beta=106.2851(9) degrees, Z=4. Complex 5 contains two [(C(6)H(5))(3)Sn(IV)] moieties linked by a double deprotonated 2-mercaptonicotinic acid (H(2)mna). Both tin(IV) ions are five coordinated. This complex is the an example of a pentacoordinated Ph(3)SnXY system with an axial-equatorial arrangement of the phenyl groups at Sn(1) atom. Compounds 1, 3 and 5 were tested for in vitro cytotoxicity against the cancer cell line of sarcoma cells (mesenchymal tissue) from the Wistar rat, polycyclic aromatic hydrocarbons (benzo[a]pyrene) carcinogenesis. Compound 5 exhibits strong cytotoxic activity, while complexes 1 and 3 show less cytotoxic activity.  相似文献   

6.
Equilibrium and spectroscopic (1H, 13C NMR and 119Sn M?ssbauer) studies in aqueous solution are reported for dimethyltin(IV) complexes of 2-hydroxyhippuric acid (Sal-Gly). Below pH 4, oxygen-coordinated complexes MLH and ML are formed. In the pH range 5-8.5, the species MLH(-1), predominates at any metal-to-ligand ratio. The ligand exchange of this species is slow on the NMR time scale, which allows its structural characterization by NMR spectroscopy: the coordination polyhedron around the tin atom is distorted trigonal bipyramidal, with tridentate [O-,N-,COO-] coordination of Sal-Gly, involving two equatorial methyl groups. The NMR results reveal that the main cause of the distortion of the polyhedron is the large CH3-Sn-CH3 angle of 136+/-4 degrees. The presented results supplement the data available on the dimethyltin(IV)-promoted amide deprotonation of peptides, and provide further arguments for the fundamental role of the carboxylate as an anchoring group in this process.  相似文献   

7.
The formation and stability of Mg(2+) and Ca(2+)-phytate complexes was studied potentiometrically using an ISE-H(+) electrode. Measurements were performed at 10 degrees C and 25 degrees C in NaCl(aq) in the ionic strength range 0.1< or =I< or =0.75 mol L(-1). For both magnesium and calcium systems, the formation of ten M(i)PhyH(j)((12-2i-j)-) species was observed in the range 3< or =pH< or =7 with i=1, 2, 3 and j=3, 4, 5 (and i=3, j=2). These species are quite stable; here we report for example some quantitative data for the species Ca(i)PhyH(3)((9-2i)-), i=1, 2, 3 (equilibrium iCa(2+)+H(j)Phy((12-j)-)=Ca(i)PhyH(j)((12-j-2i)-): K(ij)) at I=0.25 mol L(-1) and t=25 degrees C: logK(13)=3.42, logK(23)=6.47 and logK(33)=9.41. The speciation of the Ca(2+)-phytate system was also checked by ISE-Ca(2+) measurements. Dependence on ionic strength was modeled using a simple Debye-Hückel type equation and formation constants were calculated at infinite dilution. The stability constants of complexes formed at pH>7 were estimated using an empirical predictive equation. The sequestering ability of phytate towards Mg(2+) and Ca(2+) was calculated in different experimental conditions and compared with those of other chelating agents.  相似文献   

8.
The synthesis and crystallographic characterization of a series of diiron(II) complexes with sterically hindered terphenyl carboxylate ligands and alkyl amine donors are presented. The compounds [Fe(2)(mu-O(2)CAr(Tol))(4)(L)(2)] (L=NH(2)(CH(2))(2)SBn (1); NH(2)(CH(2))(3)SMe (2); NH(2)(CH(2))(3)CCH (3)), where (-)O(2)CAr(Tol) is 2,6-di(p-tolyl)benzoate, and [Fe(2)(mu-O(2)CAr(Xyl))(2)(O(2)CAr(Xyl))(2)(L)(2)] (L=NH(2)(CH(2))(3)SMe (4); NH(2)(CH(2))(3)CCH (5)), where (-)O(2)CAr(Xyl) is 2,6-di(3,5-dimethylphenyl)benzoate, were prepared as small molecule mimics of the catalytic sites of carboxylate-bridged non-heme diiron enzymes. The compounds with the (-)O(2)CAr(Tol) carboxylate form tetrabridged structures, but those containing the more sterically demanding (-)O(2)CAr(Xyl) ligand have only two bridging ligands. The ancillary nitrogen ligands in these carboxylate-rich complexes incorporate potential substrates for the reactive metal centers. Their oxygenation chemistry was studied by product analysis of the organic fragments following decomposition. Compound 1 reacts with dioxygen to afford PhCHO in approximately 30% yield, attributed to oxidative dealkylation of the pendant benzyl group. Compound 3 decomposes to form Fe(II)Fe(III) and Fe(III)Fe(IV) mixed-valence species by established bimolecular pathways upon exposure to dioxygen at low temperatures. Upon decomposition, the alkyne-substituted amine ligand was recovered quantitatively. When the (-)O(2)CAr(Tol) carboxylate was replaced by the (-)O(2)CAr(Xyl) ligand in 5, different behavior was observed. The six-coordinate iron(III) complex with one bidentate and two monodentate carboxylate ligands, [Fe(O(2)CAr(Xyl))(3)(NH(2)(CH(2))(3)CCH)(2)] (6), was isolated from the reaction mixture following oxidation.  相似文献   

9.
Abstract

The formation of complex species in the dimethyltin(IV) and trimethyltin(IV)-carboxymethyl-L-cysteinate (carbocysteinate) systems in NaClaq, at different ionic strengths, and in a multicomponent Na+, K+, Ca2+ ,Mg2+, Cl? and SO42-? medium representative of the seawater major composition, is discussed. Experimental results give evidence for the formation of the following species (L = carbocysteinate): [(CH3)2Sn(L)]0, [(CH3)2Sn(HL)]+, [(CH3)2Sn(OH)(L)]?, [(CH3)2Sn(OH)2(L)]2? in the DMT–CCYS system, and [(CH3)3Sn(HL)]0, [(CH3)3Sn(L)]? and [(CH3)3Sn(OH)(L)]2? in the TMT-CCYS system. The ionic strength dependence of formation constants was taken into account by an extended Debye Hückel type equation and by the SIT (Specific ion Interaction Theory). Measurements were carried out also on the dimethyltin(IV)-glutamate and trimethyltin(IV)-glutamate systems in NaClaq, owing the strict similarity of glutamate and carbocysteinate. Results obtained show the formation of complex species having the same stoichiometry as those formed in the DMT- and TMT-carbocysteinate systems, with very similar stability, confirming that carbocysteinate behaves as a dicarboxylic amino acid without involving the sulfur-bridge potential binding site in metal coordination.  相似文献   

10.
The interaction between protonated branched poly(ethylenimine) [BPEI] and phytate (1,2,3,4,5,6 hexakis (di-hydrogen phosphate) myo-inositol) [Phy] was studied potentiometrically. The measurements were carried out at t=25 degrees C and at low ionic strength values, without addition of supporting electrolyte, to avoid interferences with other anions and cations. In order to simplify the data treatment, BPEI was considered as a simple tetramine. Different species Phy(BPEI)H(j), with j=6,7,8, and Phy(BPEI)(2)H(7) were found, having quite high stability. The ability of phytate to sequester BPEI was quantified by considering the parameter pL(50), namely the concentration (-log [Phy](tot)) necessary to bind 50% of polyammonium cation (as trace). In our experimental conditions, for the system phytate-BPEI-proton we have pL(50)=7.01, at pH=7.4 and I=0.04 mol L(-1). As for other phytate-polyammonium cation systems, the stability of the phytate-BPEI species is strictly proportional to the charges involved in the formation reactions. Therefore, it was possible to calculate the free energy contribution per bond, DeltaG(b)(U)=4.4+/-0.4 kJ mol(-1). The dependence on temperature and ionic strength of the stability of phytate-low/high molecular weight polyammonium cations species, was studied using some semiempirical equations and enthalpy data for the protonation of both components. The dependence on temperature of the stability is quite low and the variation of pL(50) in the range 15< or =t/ degrees C< or =37 is less than 0.5 log units. On the contrary, the effect of ionic strength is highly significant, with a lowering of pL(50) of approximately 2 log units (I=0 to 0.15 mol L(-1)).  相似文献   

11.
Six novel triorganotin(IV) 2-maleimidopropanoato complexes: R3SnOCOCH3(CH)(COCH)2, (R: Me(1), Et(2), n-Pr(3), n-Bu(4), Ph(5), Bz(6) have been synthesized. Their solid-state configuration has been determined by FT IR and 119mSn Mössbauer spectroscopy. The tin(IV) atom is five-coordinated in all the complexes with 2-maleimidopropanoic acid behaving as a monoanionic bidentate ligand coordinating the tin(IV) atom through a chelating or bridging carboxylate group. The solution-state configuration has been elucidated by means of 1H-, 13C- and 119Sn-NMR spectroscopy which assigned a tetrahedron. Elemental analysis and FAB MS data also supported a 1:1 metal to ligand stoichiometry. The title complexes have been screened in vitro for anti-tumour, anti-fungal, anti-leishmanial and urease inhibition activities and displayed promising results.  相似文献   

12.
Radiolabeling of biologically active molecules with the [(99m)Tc(CO)(3)](+) unit has been of primary interest in recent years. With this in mind, we herein report symmetric (L(1)) and asymmetric (L(2)-L(5)) pyrazolyl-containing chelators that have been evaluated in radiochemical reactions with the synthon [(99m)Tc(H(2)O)(3)(CO)(3)](+) (1a). These reactions yielded the radioactive building blocks [(99m)Tc(CO)(3)(k(3)-L)](+) (L = L(1)-L(5), 2a-6a), which were identified by RP-HPLC. The corresponding Re surrogates (2-6) allowed for macroscopic identification of the radiochemical conjugates. Complexes 2a-6a, with log P(o/w) values ranging from -2.35 to 0.87, were obtained in yields of > or =90% using ligand concentrations in the 10(-5-)10(-4) M range. Challenge studies with cysteine and histidine revealed high stability for all of these radioactive complexes, and biodistribution studies in mice indicated a fast rate of blood clearance and high rate of total radioactivity excretion, occurring primarily through the renal-urinary pathway. Based on the framework of the asymmetric chelators, the novel bifunctional ligands 3,5-Me(2)-pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(6)) and pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(7)) have been synthesized and their coordination chemistry toward (NEt(4))(2)[ReBr(3)(CO)(3)] (1) has been explored. The resulting complexes, fac-[Re(CO)(3)(k(3)-L)]Br (L(6)(7), L(7)(8)), contain tridentate ancillary ligands that are coordinated to the metal center through the pyrazolyl and amine nitrogen atoms, as observed for the other related building blocks. L(6) and L(7) were coupled to a glycylglycine ethyl ester dipeptide, and the resulting functionalized ligands were used to prepare the model complexes fac-[Re(CO)(3)(kappa(3)-3,5-Me(2)-pz(CH(2))(2)N(glygly)(CH(2))(2)NH(2))](+) (9/9a) and fac-[Re(CO)(3)(kappa(3)-pz(CH(2))(2)N(CH(2))(3)(glygly)(CH(2))(2)NH(2))](+) (10/10a) (M = Re, (99m)Tc). These small conjugates have been fully characterized and are reported herein. On the basis of the in vitro/in vivo behavior of the model complexes (2a-6a, 9a, 10a), we chose to evaluate the in vitro/in vivo biological behavior of a new tumor-seeking Bombesin pyrazolyl conjugate, [(L(6))-G-G-G-Q-W-A-V-G-H-L-M-NH(2)], that has been labeled with the [(99m)Tc(CO)(3)](+) metal fragment. Stability, in vitro cell binding assays, and pharmacokinetics studies in normal mice are reported herein.  相似文献   

13.
A new series of ligands is synthesised starting from thiocarbonohydrazide and isatin (H(2)itc) or N-alkylisatin (methyl, H(2)mtc; butyl, H(2)btc; pentyl, H(2)ptc); the X-ray structure of H(2)mtc is discussed. The bis imine ligands are reacted with diorganotin(IV) compounds, obtaining monometallic complexes. In order to establish unequivocally their coordination geometry, the X-ray structures of (C(2)H(5))(2)Sn(Hmtc)Cl.THF (THF, tetrahydrofuran) and (C(6)H(5))Sn(Hptc)Cl(2) are determined. In (C(2)H(5))(2)Sn(Hmtc)Cl.THF, the ligand results monodeprotonated and, essentially, monodentate through the sulphur atom, while in (C(6)H(5))Sn(Hptc)Cl(2) the ligand is still monodeprotonated but SNO tridentate. The organotin(IV) complexes of isatin and N-methylisatin exhibit good antibacterial activity, better than that of the corresponding N-butyl and N-pentylisatin derivatives. Gram positive bacteria are the most sensitive microorganisms. No growth inhibition of fungi is detected up to the concentration of 100 microg/ml. H(2)mtc shows mutagenic activity with and without metabolic activation, whereas no mutagenicity is found for its organotin complexes and for the other compounds.  相似文献   

14.
A novel cyclic dimethyltin complex [Me2Sn(2,6-pdc)]3 (1) (2,6-pdc = 2,6-pyridinedicarboxylate) was synthesized by the reaction of dimethyltin (IV) dichloride and 2,6-pyridinedicarboxylate acid in methanol under solvothermal conditions (150 °C). However, under room temperature (25 °C), we obtained a ladder complex [Me2Sn(2,6-pdc)]2(MeOH)2 (2). Characterization of complexes 1 and 2 was achieved using elemental analysis, IR, 1H, 13C and 119Sn NMR spectra and X-ray diffraction. X-ray data of 1 revealed that it was an unusual cyclic complex with a discrete cyclotrinuclear unit, in which the 12-membered cyclic cavity is almost completely planar. X-ray data of 2 showed that it was a ladder complex, in which a crystallizing methanol molecule is found in each formula unit.  相似文献   

15.
《Inorganica chimica acta》1986,123(3):127-131
The modified method of preparation of water soluble metalloporphyrins is presented. As a ligand 5,10,15,20-tetra-p(N-ethyl-N,N-dimethyl)anilinporphyrinium disulphate was used. The structure of the obtained metalloporphyrins for the following metal cations: Mg(II), Zn(II), Cd(II), Ag(II), Ru(Il), Rh(II), Ni(II), Fe(III), Mn(III), Co(III) and Sn(IV), was confirmed by electron, IR spectra and elemental analyses.  相似文献   

16.
Three new complexes [Cu(L)(2)(NO(3))](NO(3))(H(2)O)(1/2)(CH(3)OH)(1/2) (1), [Cd(L)(2)(NO(3))(2)](H(2)O)(3) (2) and [Cd(L)(2)(ClO(4))(CH(3)OH)](ClO(4))(H(2)O)(1/4)(CH(3)OH) (3) (L=1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene) were synthesized and characterized by elemental analyses, IR and X-ray diffraction analysis. Among them, the Cu(II) and Cd(II) ions were both coordinated by four N donors from two distinct L ligands via N,N-bidentate chelating coordination mode. Additional weak interactions, such as the face-to-face pi-pi stacking and C-Hcdots, three dots, centeredO H-bonding interactions, linked the mononuclear unit into 1D chain and further into 2D network. Complexes 1-3 were subjected to biological assays in vitro against six different cancer cell lines. All of them exhibited cytotoxic specificity and notable cancer cell inhibitory rate. The interactions of 1-3 with calf thymus DNA were investigated by thermal denaturation, viscosity measurements, spectrophotometric and electrophoresis methods. The results indicate that these complexes bound to DNA by intercalation mode via the ligand L and had different nuclease activities, which were in good agreement with their DNA-binding strength. Moreover, the central metal ions of 1-3 played a vital role in DNA-binding behaviors, DNA-cleavage activities and cytotoxicities, whereas the contribution of the different counter anions to their bioactivities also should not be ignored.  相似文献   

17.
The organometallic precursor (NEt(4))(2)[ReBr(3)(CO)(3)] was reacted with bidendate dithioethers (L) of the general formula H(3)C-S-CH(2)CH(2)-S-R (R = -CH(2)CH(2)COOH, CH(2)-C&tbd1;CH) and R'-S-CH(2)CH(2)-S-R' (R' = CH(3)CH(2)-, CH(3)CH(2)-OH, and CH(2)COOH) in methanol to form stable rhenium(I) tricarbonyl complexes of the general composition [ReBr(CO)(3)L]. Under these conditions, the functional groups do not participate in the coordination. As a prototypic representative of this type of Re compounds, the propargylic group bearing complex [ReBr(CO(3))(H(3)C-S-CH(2)CH(2)-S-CH(2)C&tbd1;CH)] Re2 was studied by X-ray diffraction analysis. Its molecular structure exhibits a slightly distorted octahedron with facial coordination of the carbonyl ligands. The potentially tetradentate ligand HO-CH(2)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(2)-OH was reacted with the trinitrato precursor [Re(NO(3))(3)(CO)(3)](2-) to yield a cationic complex [Re(CO)(3)(HO-CH(2)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(2)-OH)]NO(3) Re8 which shows the coordination of one hydroxy group. Re8 has been characterized by correct elemental analysis, infrared spectroscopy, capillary electrophoresis, and X-ray diffraction analysis. Ligand exchange reaction of the carboxylic group bearing ligands H(3)C-S-CH(2)CH(2)-S-CH(2)CH(2)-COOH and HOOC-CH(2)-S-CH(2)CH(2)-S-CH(2)-COOH with (NEt(4))(2)[ReBr(3)(CO)(3)] in water and with equimolar amounts of NaOH led to complexes in which the bromide is replaced by the carboxylic group. The X-ray structure analysis of the complex [Re(CO)(3)(OOC-CH(2)-S-CH(2)CH(2)-S-CH(2)-COOH)] Re6 shows the second carboxylic group noncoordinated offering an ideal site for functionalization or coupling a biomolecule. The no-carrier-added preparation of the analogous (99m)Tc(I) carbonyl thioether complexes could be performed using the precursor fac-[(99m)Tc(H(2)O)(3)(CO)(3)](+), with yields up to 90%. The behavior of the chlorine containing (99m)Tc complex [(99m)TcCl(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))] Tc1 in aqueous solution at physiological pH value was investigated. In saline, the chromatographically separated compound was stable for at least 120 min. However, in chloride-free aqueous solution, a water-coordinated cationic species Tc1a of the proposed composition [(99m)Tc(H(2)O)(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))](+) occurred. The cationic charge of the conversion product was confirmed by capillary electrophoresis. By the introduction of a carboxylic group into the thioether ligand as a third donor group, the conversion could be suppressed and thus the neutrality of the complex preserved. Biodistribution studies in the rat demonstrated for the neutral complexes [(99m)TcCl(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))] Tc1 and [(99m)TcCl(CO)(3)(CH(2)-S-CH(2)CH(2)-S-CH(2)-C&tbd1;CH)] Tc2 a significant initial brain uptake (1.03 +/- 0.25% and 0.78 +/- 0.08% ID/organ at 5 min. p.i.). Challenge experiments with glutathione clearly indicated that no transchelation reaction occurs in vivo.  相似文献   

18.
The complexes [M(L(1))(2)(NO(3))] and [M(L(2))(NO(3))(2)](M = Pr, Er; L(1)= the tetradentate ligand dihydrobis-[3-(2-pyridyl)pyrazolyl]borate; L(2)= the hexadentate ligand hydrotris-[3-(2-pyridyl)pyrazolyl]borate) were prepared and their structural and photophysical properties studied. All complexes are 10-coordinate. Crystallographic analysis of [M(L(1))(2)(NO(3))](M = Pr, Er) showed that for the smaller Er(iii) ions steric congestion at the metal centre results in two of the Er-N(pyridyl) distances being particularly long, which does not occur with the larger Pr(iii) ion that is better able to accommodate 10-fold coordination. On UV irradiation, both Pr(iii) complexes show, in the visible region of their luminescence spectra, transitions originating from both the (3)P(0) level (at ca. 21,000 cm(-1)) and the (1)D(2) level (at ca. 17,000 cm(-1)), a consequence of the fact that the lowest triplet state of the coordinated pyrazolylborate ligands lies at ca. 24,000 cm(-1) in each case so is high enough in energy to populate both levels. This contrasts with Pr(iii) complexes based on diketonate ligands in which the lower triplet energies of the ligands result in emission from the (1)D(2) level only. At longer wavelengths, near-infrared luminescence arising from the (1)D(2) emissive level is observed with lifetimes (in both the solid state and solution) being in the range 50-110 ns. For both Er(iii) complexes, luminescence at 1530 nm occurs following UV excitation of ligand-centred transitions. In CH(2)Cl(2) both complexes gave dual-exponential luminescence, with the major component having a lifetime characteristic of an intact Er(iii) complex (approximately 1.5 micros) and the minor component being much shorter lived (0.2-0.5 micros), suggestive of a species in which a ligand is partially detached and the metal is solvated, with the two forms interconverting slowly. This behaviour is consistent with the steric congestion and long M-N(pyridyl) bonds that were observed in [Er(L(1))(2)(NO(3))]. In the solid state both Er(iii) complexes gave very weak luminescence, which could be fitted to a single exponential decay with a lifetime similar to the longer-lived of the solution components.  相似文献   

19.
Aspergillus niger NCIM 563 produced two different extracellular phytases (Phy I and Phy II) under submerged fermentation conditions at 30°C in medium containing dextrin-glucose-sodium nitrate-salts. Both the enzymes were purified to homogeneity using Rotavapor concentration, Phenyl-Sepharose column chromatography and Sephacryl S-200 gel filtration. The molecular mass of Phy I and II as determined by SDS–PAGE and gel filtration were 66, 264, 150 and 148 kDa respectively, indicating that Phy I consists of four identical subunits and Phy II is a monomer. The pI values of Phy I and II were 3.55 and 3.91, respectively. Phy I was highly acidic with optimum pH of 2.5 and was stable over a broad pH range (1.5–9.0) while Phy II showed a pH optimum of 5.0 with stability in the range of pH 3.5–9.0. Phy I exhibited very broad substrate specificity while Phy II was more specific for sodium phytate. Similarly Phy II was strongly inhibited by Ag+, Hg2+ (1 mM) metal ions and Phy I was partially inhibited. Peptide analysis by Mass Spectrometry (MS) MALDI-TOF also indicated that both the proteins were totally different. The K m for Phy I and II for sodium phytate was 2.01 and 0.145 mM while V max was 5,018 and 1,671 μmol min?1 mg?1, respectively. The N-terminal amino acid sequences of Phy I and Phy II were FSYGAAIPQQ and GVDERFPYTG, respectively. Phy II showed no homology with Phy I and any other known phytases from the literature suggesting its unique nature. This, according to us, is the first report of two distinct novel phytases from Aspergillus niger.  相似文献   

20.
An overview of our work on the synthesis and biological activity of a series of tin(IV), silver(I) and antimony(III) complexes with thioamides is reported. Organotin(IV) complexes of formulae (n-Bu)2Sn(MBZT)2 (1), Me2Sn(CMBZT)(2) (2), {(Ph3Sn)2(MNA) (Me2CO)} (3), Ph3Sn(MBZT) (4), Ph3Sn(MBZO) (5), Ph3Sn(CMBZT) (6), Ph2Sn(CMBZT)2 (7) and (n-Bu)2Sn(CMBZT)2 (8), Me2Sn(PMT)2 (9), (n-Bu)2Sn(PMT)2 (10), Ph2Sn(PMT)2 (11), Ph3Sn(PMT) (12) {where MBZT=2-mercapto-benzothiazole, CMBZT=5-chloro-2-mercapto-benzothiazole, H2MNA=2-mercapto-nicotinic acid, MBZO=2-mercapto-benzoxazole and PMTH=2-mercapto-pyrimidine} were characterized by spectroscopic (NMR, IR, Mossbauer, etc.) and X-ray diffraction techniques and their influence on the peroxidation of oleic acid was studied. They were found to inhibit strongly the peroxidation of linoleic acid by the enzyme lipoxygenase. In addition, organotin(IV) complexes were found to exhibit stronger cytotoxic activity in vitro, against leiomyosarcoma cells, than cisplatin. The antiproliferative activity of the organotin complexes studied, against leiomyosarcoma cells follow the same order of LOX activity inhibition. This is, 3>12>7>6 approximately 8 approximately 10>5 approximately 4>2>9. Thus, among organotin(IV)-CMBZT complexes, 7 exhibits higher activity than the others and this is explained by a free radical mechanism, as it is revealed by an EPR study. The results are compared with the corresponding ones found for the silver(I) complexes of formulae complexes {[Ag6(mu3-HMNA)4(mu3-MNA)2](2-).[(Et(3)NH)+]2.(DMSO)2.(H2O)} (13), {[Ag4Cl4(mu3-STHPMH2)4]n} (14), {[Ag6(mu2-Br)6(mu2-STHPMH2)4(mu3-STHPMH2)2]n} (15), {[Ag4(mu2STHPMH2)6](NO3)4}(n) (16), {[AgCl(TPTP)]4} (17), [AgX(TPTP)3] with X=Cl (18), Br (19), I (20) (where STHPMH2=2-mercapto-3,4,5,6-tetrahydro-pyrimidine, TPTP=tri(p-toly)phosphine) and those of antimony(III) complexes {[SbCl2(MBZIM)4](+).Cl(-).2H2O.(CH3OH)} (21), {[SbCl2(MBZIM)4]+.Cl(-).3H2O.(CH3CN)} (22), [SbCl3(MBZIM)2] (23), [SbCl3(EMBZIM)2] (24), [SbCl3(MTZD)2] (25), {[SbCl3(THPMT)2]} (26) and {[Sb(PMT)3].0.5(CH3OH)} (27) (where MBZIM is 2-mercapto-benzimidazole, EMBZIM=5-ethoxy-2-mercapto-benzimidazole and MTZD is 2-mercapto-thiazolidine), which they have characterized with similar techniques as in case of organotin(IV) complexes. Silver(I) and antimony(III) complexes were found to be cytotoxic against various cancer cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号