首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have characterized a voltage-sensitive chloride channel from cardiac sarcoplasmic reticulum (SR) following reconstitution of porcine heart SR into planar lipid bilayers. In 250 mm KCl, the channel had a main conductance level of 130 pS and exhibited two substrates of 61 and 154 pS. The channel was very selective for Cl over K+ or Na+ ( and ). It was permeable to several anions and displayed the following sequence of anion permeability: SCN > I > NO 3 Br > Cl > f > HCOO. Single-channel conductance saturated with increasing Cl concentrations (K m= 900 mm and max = 488 pS). Channel activity was voltage dependent, with an open probability ranging from 1.0 around 0 mV to 0.5 at +80 mV. From –20 to +80 mV, channel gating was time-independent. However, at voltages below –40 mV the channel entered a long-lasting closed state. Mean open times varied with voltage, from 340 msec at –20 mV to 6 msec at +80 mV, whereas closed times were unaffected. The channel was not Ca2+-dependent. Channel activity was blocked by disulfonic stilbenes, arylaminobenzoates, zinc, and cadmium. Single-channel conductance was sensitive to trans pH, ranging from 190 pS at pH 5.5 to 60 pS at pH 9.0. These characteristics are different from those previously described for Cl channels from skeletal or cardiac muscle SR.We thank Dr. Barry Pallotta for help with open and closed intervals analysis and Dr. Gerhard Meissner for his suggestions for the preparation of cardiac sarcoplasmic reticulum membranes. This work was supported by a grant from the National Institutes of Health to R.L.R. and a Student Grant-in-Aid from the American Heart Association, North Carolina affiliate to C.T. R.L.R. is an Established Investigator of the American Heart Association.  相似文献   

2.
Summary Vesicles derived from epithelial cells of the colonic mucosa of the rat were fused to planar phospholipid bilayer membranes, revealing spontaneously switching anion-conducting channels of 50 pS conductance (at-30 mV with 200mm Cl each side). The equilibrium selectivity series was I (1.7)/Br (1.3)/Cl (1.0)/F (0.4)/HCO 3 (0.4)/Na (<0.11.). Only one dominant open-state conductance could be resolved, which responded linearly to Cl concentrations up to 600mm. The singlechannel current-voltage curve was weakly rectifying with symmetrical solutions. When 50 mV were exceeded at the highconductance branch of the curve, switching was arrested in the closed state. At more moderate voltages (±40 mV) kinetics were dominated by one open state of about 35-msec lifetime and two closed states of about 2 and 9-msec lifetime. Of these, the more stable closed state occurred less often. At these voltages one additional closed state of significantly longer lifetime (>0.5 sec) was observed.  相似文献   

3.
Outwardly rectifying chloride channels in lymphocytes   总被引:5,自引:0,他引:5  
Summary Outwardly rectifying Cl channels in cultured human Jurkat T-lymphocytes were activated by excising a patch of membrane using the inside-out (i/o) patch-clamp configuration and holding at depolarized voltages for prolonged periods of time (1–6 min at +80 mV, 20°C). The single-channel current at +80 mV was 4.5 ± 0.3 pA and at –80 mV, it was 1.0 ± 0.4 pA. After activation, the probability of being open (P 0)for the lymphocyte channel was voltage independent. Activation of the Cl channel in lymphocytes was temperature dependent. Nineteen percent of i/o recordings from lymphocytes made at 20°C exhibited Cl channel activity. In contrast, 49% of recordings made at 30°C showed channel activity. The number of channels in an active patch was not significantly different at the two temperatures. Channel activation in excised, depolarized patches also occurred 20-fold faster at 30°C than at 20°C. There was no marked change in the single-channel conductance at 30°C. Open-channel conductance was blocked by 200 m indanyloxyacetic acid (IAA) or 1 mm SITS when applied to the intracellular side of the patch. The characteristics of this channel are similar to epithelial outwardly rectifying Cl channels thought to be involved in fluid secretion  相似文献   

4.
Summary In cultured bovine aortic endothelial cells, elementary K+ currents were studied in cell-attached and inside-out patches using the standard patch-clamp technique. Two different cationic channels were found, a large channel with a mean unitary conductance of 150±10 pS and a small channel with a mean unitary conductance of 12.5±1.1 pS. The 150-pS channel proved to be voltag- and Ca2+-activatable and seems to be a K+ channel. Its open probability increased on membrane depolarization and, at a given membrane potential, was greatly enhanced by elevating the Ca2+ concentration at the cytoplasmic side of the membrane from 10–7 to 10–4 m. 150-pS channels were not influenced by the patch configuration in that patch excision neither induced rundown nor evoked channel activity in silent cell-attached patches. However, they were only seen in two out of 55 patches. The 12-pS channel was predominant, a nonselective cationic channel with almost the same permeability for K+ and Na+ whose open probability was minimal near –60 mV but increased on membrane hyperpolarization. An increase in internal Ca2+ from 10–7 to 10–4 m left the open probability unchanged. Although the K+ selectivity of the 150-pS channels remains to be elucidated, it is concluded that they may be involved in controlling Ca2+-dependent cellular functions. Under physiological conditions, 12-pS nonselective channels may provide an inward cationic pathway for Na+.  相似文献   

5.
The influence of the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) on single Ca2+ channel activity was studied on unidentified neurons of the snailHelix pomatia. Only one type of Ca2+ channels with the unitary conductance of 5 pS was identified using 100 mM Ca2+ in the patch pippette under patch-clamp in a cell-attached configuration. The amplitude histogram showed only one peak with the mean value of 0.5 pA at the testing potential of –30 mV. The distribution of channel open times monotonically declined with the mean time constant of 0.2 msec. The distribution of channel closed times could be fitted by a double-exponential curve with time constants of 1 and 12 msec. The study of the effect of 5-HT on Ca2+ single channel activity showed that 5-HT influenced the channel molecule indirectly, as the transmitter could exert its effect by being added to the bath solution, which did not come into contact with the tested membrane fragment under the micropipette tip. 5-HT prolonged the mean channel open time (up to 0.3 msec) and proportionally decreased both channel closed time constants to 0.4 and 6.0 msec, respectively. A conclusion is made that enhancement of Ca2+ macrocurrent by 5-HT is determined by three factors: (i) changes in kinetics of aiready existing channels, (ii) an increase in the number of active channels of the same type, and (iii) an increase in probability of a channel being open. At the same time, the unitary channel conductance was not affected by the transmitter.Neirofiziologiya/Neurophysiology, Vol. 28, No. 2/3, pp. 132–140, March–June, 1996.  相似文献   

6.
Sarcoplasmic reticulum (SR) vesicles were prepared from either canine or sheep heart and fused into lipid bilayers to study their ionic channels. A 92±5 pS anion-selective channel was recorded in asymmetric 50 mm trans/250 mm cis CsCl buffer system. Reversal potentials and theoretical equilibrium potentials for Cl ions obtained under various experimental conditions allowed us to confirm the Cl selectivity of this SR channel. The majority (69%) of channel recordings (n = 45) displayed steady-state kinetics and a slight voltage dependency of the open probability. However, 31% of the channels inactivated after their incorporation. We now report that the channel might be reactivated by depolarizing voltage steps. Furthermore, the use of either PKA or PKG in association with adequate phosphorylating buffers lengthens the deactivation process at the end of the voltage pulses, but does not prevent the inactivation. It was assumed that the change in gating mode was due to a voltage-sensitive association/dissociation mechanism with a phosphorylated protein of the SR membrane such as phospholamban (PL). We demonstrated that a specific monoclonal antibody raised against canine PL inhibited the activity of the channel and prevented its reactivation by depolarizing steps. 400 to 800 ng/ml of Anti-PL Ab consistently and sequentially turned off the channel activities. In contrast, heat inactivated Anti-PL Ab had no effect. We propose that phospholamban may be a primer of the SR Cl channel whereby Cl anions would play the role of counter-charge carrier during rapid Ca2+ release and Ca2+ uptake by the SR.This study was supported by grants from HSFC and CRM of Canada. A. Decrouy is a recipient of an institutional postdoctoral fellowship and E. Rousseau is a FRSQ Scholar. The author would like to thank Dr. E. Kranias for her comments and relevant suggestions for the use of the monoclonal anti-PL antibody as well as Mrs. M. Picher and Miss S. Proteau for thier skillful technical assistance.  相似文献   

7.
Summary The properties of an anion-selective channel observed in basolateral membranes of microdissected, collagenase-treated, cortical thick ascending limbs of Henle's loop from mouse kidney were investigated using patch-clamp single-channel recording techniques. In basal conditions, single Cl currents were detected in 8% of cell-attached and excised, inside-out, membrane patches whereas they were observed in 24% of cell-attached and 67% of inside-out membrane patches when tubular fragments were preincubated with Forskolin (10–5 m) or 8-bromo-cAMP (10–4 m) and isobutylmethylxanthine (10–5 m). The channel exhibited a linear current-voltage relationship with conductances of about 40 pS in both cell-attached and cell-free membrane configurations. AP Na + P Cl ratio of 0.05 was estimated in the presence of a 142/42mm NaCl concentration gradient applied to inside-out membrane patches. Anionic selectivity of the channel followed the sequence Cl>Br>No 3 F; gluconate was not a permeant species. The open-state probability of the channel increased with membrane depolarization in cell-attached, i.e.,in situ membrane patches. In excised, inside-out, membrane patches, the channel was predominantly open with the open-state probability close to 0.8 over the whole range of potentials tested (–60 to +60 mV). The channel activity was not a function of internal calcium concentration between 10–9 and 10–3 m. We suggest that this Cl channel, whose properties are distinct from those in other epithelia, could account for the well-documented conductance which mediates Cl exit in the basolateral step of NaCl absorption in thick ascending limb of Henle's loop.  相似文献   

8.
Multiple genes of the TASK subfamily of two-pore domain K+ channels are reported to be expressed in rat glomerulosa cells. To determine which TASK isoforms contribute to native leak channels controlling resting membrane potential, patch-clamp studies were performed to identify biophysical and pharmacological characteristics of macroscopic and unitary K+ currents diagnostic of recombinant TASK channel isoforms. Results indicate K+ conductance (gK+) is mediated almost exclusively by a weakly voltage-dependent (leak) K+ channel closely resembling TASK-3. Leak channels exhibited a unitary conductance approximating that expected for TASK-3 under the recording conditions employed, brief mean open times and a voltage-dependent open probability. Extracellular H+ induced voltage-independent inhibition of gK+, exhibiting an IC50 of 56 nM (pH 7.25) and a Hill coefficient of 0.75. Protons inhibited leak channel open probability (Po) by promoting a long-lived closed state (τ > 500 ms). Extracellular Zn2+ mimicked the effects of H+; inhibition of gK+ exhibited an IC50 of 41 μM with a Hill coefficient of 1.26, inhibiting channel gating by promoting a long-lived closed state. Ruthenium red (5 μM) inhibited gK+ by 75.6% at 0 mV. Extracellular Mg2+ induced voltage-dependent block of gK+, inhibiting unitary current amplitude without affecting mean open time. Bupivacaine induced voltage-dependent block of gK+, exhibiting IC50 values of 116 μM at −100 mV and 28 μM at 40 mV with Hill coefficients of 1 at both potentials. Halothane induced a voltage-independent stimulation of gK+ primarily by decreasing the leak channel closed-state dwell time.  相似文献   

9.
Single channel properties of cardiac and fast-twitch skeletal muscle sarcoplasmic reticulum (SR) release channels were compared in a planar bilayer by fusing SR membranes in a Cs+-conducting medium. We found that the pharmacology, Cs+ conductance and selectivity to monovalent and divalent cations of the two channels were similar. The cardiac SR channel exhibited multiple kinetic states. The open and closed lifetimes were not altered from a range of 10–7 to 10–3 M Ca2+, but the proportion of closed and open states shifted to shorter closings and openings, respectively.However, while the single channel activity of the skeletal SR channel was activated and inactivated by micromolar and millimolar Ca2+, respectively, the cardiac SR channel remained activated in the presence of high [Ca2+]. In correlation to these studies, [3H]ryanodine binding by the receptors of the two channel receptors was inhibited by high [Ca2+] in skeletal but not in cardiac membranes in the presence of adenine nucleotides. There is, however, a minor inhibition of [3H]ryanodine binding of cardiac SR at millimolar Ca2+ in the absence of adenine nucleotides.When Ca2+-induced Ca2+ release was examined from preloaded native SR vesicles, the release rates followed a normal biphasic curve, with Ca2+-induced inactivation at high [Ca2+] for both cardiac and skeletal SR. Our data suggest that the molecular basis of regulation of the SR Ca2+ release channel in cardiac and skeletal muscle is different, and that the cardiac SR channel isoform lacks a Ca2+-inactivated site.This work was supported by research grants from the National Institutes of Health HL13870 and AR38970, and the Texas Affiliate of the American Heart Association, 91A-188. M. Fill was the recipient of an NIH fellowship AR01834.  相似文献   

10.
We have characterized the conduction and blocking properties of a chloride channel from rough endoplasmic reticulum membranes of rat hepatocytes after incorporation into a planar lipid bilayer. Our experiments revealed the existence of a channel with a mean conductance of 164 ± 5 pS in symmetrical 200 mm KCl solutions. We determined that the channel was ten times more permeable for Cl than for K+, calculated from the reversal potential using the Goldman-Hodgkin-Katz equation. The channel was voltage dependent, with an open probability value ranging from 0.9 at −20 mV to 0.4 at +60 mV. In addition to its fully open state, the channel could also enter a flickering state, which appeared to involve rapid transitions to zero current level. Our results showed a decrease of the channel mean open time combined with an increase of the channel mean closed time at positive potentials. An analysis of the dwell time distributions for the open and closed intervals led to the conclusion that the observed fluctuation pattern was compatible with a kinetic scheme containing a single open state and a minimum of three closed states. The permeability sequence for test halides determined from reversal potentials was Br > Cl > I≈ F. The voltage dependence of the open probability was modified by the presence of halides in trans with a sequence reflecting the permeability sequence, suggesting that permeant anions such as Br and Cl have access to an internal site capable of controlling channel gating. Adding NPPB to the cis chamber inhibited the channel activity by increasing fast flickering and generating long silent periods, whereas channel activity was not affected by 50 μm DNDS in trans. The channel was reversibly inhibited by adding phosphate to the trans chamber. The inhibitory effect of phosphate was voltage-dependent and could be reversed by addition of Cl. Our results suggest that channel block involves the interaction of HPO2− 4 with a site located at 70% of the membrane span. Received: 10 January 1997/Revised: 29 May 1997  相似文献   

11.
Macroscopic and unitary currents through stretch-activated Cl channels were examined in isolated human atrial myocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ and Ca2+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+] i ) was reduced, application of positive pressure via the pipette activated membrane currents under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by 60 mV per 10-fold change in the external Cl concentration, indicating that the current was Cl selective. The current was inhibited by bath application of 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and 9-anthracenecarboxylic acid (9-AC). β-Adrenergic stimulation failed to activate a Cl current. In single channel recordings from outside-out patches, positive pressure in the pipette activated the unitary current with half-maximal activation of 14.7 mm Hg at +40 mV. The current-voltage relationship of single channel activity obtained in inside-out patches was linear in symmetrical Cl solution with the averaged slope conductance of 8.6 ± 0.7 pS (mean ±sd, n= 10). The reversal potential shift of the channel by changing Cl concentration was consistent with a Cl selective channel. The open time distribution was best described by a single exponential function with mean open lifetime of 80.4 ± 9.6 msec (n= 9), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 11.5 ± 2.2 msec (n= 9) and that for the slow component of 170.2 ± 21.8 msec (n= 9). Major changes in the single channel activity in response to pressure were caused by changes in the interburst interval. Single channel activity was inhibited by DIDS and 9-AC in a manner similar to whole-cell configuration. These results suggest that membrane stretch induced by applying pressure via the pipette activated a Cl current in human atrial myocytes. The current was sensitive to Cl channel blockers and exhibited membrane voltage-independent bursting opening without sensitive to β-adrenergic stimulation. Received: 21 October 1996/Revised: 17 December 1997  相似文献   

12.
Cultured mouse MTAL cells contain more mRNA encoding the Cl channel mcClC-Ka, which mediates CTAL Cl absorption, than mRNA encoding the Cl channel mmClC-Ka, which mediates MTAL Cl absorption. mmClC-Ka and mcClC-Ka have three functional differences: 1) mmClC-Ka open time probability, P o, increases with increasing cytosolic Cl, but variations in cytosolic Cl do not affect P o in mcClC-Ka; 2) mmClC-Ka is gated by (ATP + PKA), while (ATP + PKA) have no effect on P o in mcClC-Ka; and 3) mmClC-Ka channels have single-ion occupancy, while mcClC-Ka channels have multi-ion occupancy. Using basolateral vesicles from MTAL cells fused into bilayers, we evaluated the effects of 1 mM cytosolic phenylglyoxal (PGO), which binds covalently to lysine or arginine, on Cl channels. With PGO pretreatment, Cl channels were uniformly not gated either with increases in cytosolic-face Cl or with (ATP + PKA) at 2 mm cytosolic-face Cl; and they exhibited multi-ion occupancy kinetics typical for mcClC-Ka channels. Thus, in basolateral MTAL membranes, blockade of Cl access to arginine or lysine residues on mmClC-Ka by PGO results in Cl channels having the functional characteristics of mcClC-Ka channels.  相似文献   

13.
Summary Efflux of36Cl from frog sartorius muscles equilibrated in depolarizing solutions was measured. Cl efflux consists of a component present at low pH and a pH-dependent component which increases as external pH increases. In depolarized muscles fromRana pipiens, the pH-dependent Cl efflux has an apparent pK a near 6.4.The reduction of Cl efflux by external Zn2+ was determined at different external pHs and chloride activities. The effect of external chloride activity on the pH-dependent Cl efflux was also examined.At pH 6.5 and a membrane potential of –22 mV, increasing external Cl activity from 0.108 to 0.28m decreased inhibition of the pH-dependent Cl efflux at all activities of Zn2+. The Zn2+ activity needed to reduce Cl efflux by half increased from 0.39×10–3 to 2.09×10–3 m. By contrast, external Cl activity had no measurable effect on the apparent pK a of the pH-dependent efflux.At constant Cl activity less than 0.21m, increasing external pH from 6.5 to 7.5 decreased inhibition by low Zn2+ activities with either a slight increase or no change in the Zn2+ activity producing half-inhibition. In other words, for relatively low Cl activities, protection against inhibition of Cl efflux by low Zn2+ activities was obtained by raising, not lowering, external pH; this is not what is expected if H+ and Zn2+ ions compete at the same site to produce inhibition of Cl efflux. We conclude that Zn2+ and low pH inhibit Cl efflux by separate and distinct mechanisms.By contrast, the protection against Zn2+ inhibition produced by high external Cl activity (0.28m) was partially reversed by raising external pH from 6.5 to 7.5 at all Zn2+ activities. The half-inhibition Zn2+ activity decreased from 2.09×10–3 to 0.68×10–3 m.The results can be simulated quantitatively by a model in which single Cl channel elements are in equilibrium with sextets of associated single-channel elements, each sextet having a conductance six times that of a single-channel element. The association into sextets is promoted by OH or Cl binding to a control site on the single-channel elements. Both the single Cl channel element and the sextet of Cl channel elements are closed when this same control site instead binds ZnOH+. The sextet has a much higher affinity for ZnOH+ than does the single Cl channel element.  相似文献   

14.
The gating and conduction properties of a channel activated by intracellular Na+ were studied by recording unitary currents in inside-out patches excised from lobster olfactory receptor neurons. Channel openings to a single conductance level of 104 pS occurred in bursts. The open probability of the channel increased with increasing concentrations of Na+. At 210 mm Na+, membrane depolarization increased the open probability e-fold per 36.6 mV. The distribution of channel open times could be fit by a single exponential with a time constant of 4.09 msec at −60 mV and 90 mm Na+. The open time constant was not affected by the concentration of Na+, but was increased by membrane depolarization. At 180 mm Na+ and −60 mV, the distribution of channel closed times could be fit by the sum of four exponentials with time constants of 0.20, 1.46, 8.92 and 69.9 msec, respectively. The three longer time constants decreased, while the shortest time constant did not vary with the concentration of Na+. Membrane depolarization decreased all four closed time constants. Burst duration was unaffected by the concentration of Na+, but was increased by membrane depolarization. Permeability for monovalent cations relative to that of Na+ (P X /P Na ), calculated from the reversal potential, was: Li+ (1.11) > Na+ (1.0) > K+ (0.54) > Rb+ (0.36) > Cs+ (0.20). Extracellular divalent cations (10 mm) blocked the inward Na+ current at −60 mV according to the following sequence: Mn2+ > Ca2+ > Sr2+ > Mg2+ > Ba2+. Relative permeabilities for divalent cations (P Y /P Na ) were Ca2+ (39.0) > Mg2+ (34.1) > Mn2+ (15.5) > Ba2+ (13.8) > Na+ (1.0). Both the reversal potential and the conductance determined in divalent cation-free mixtures of Na+ and Cs+ or Li+ were monotonic functions of the mole fraction, suggesting that the channel is a single-ion pore that behaves as a multi-ion pore when the current is carried exclusively by divalent cations. The properties of the channel are consistent with the channel playing a role in odor activation of these primary receptor neurons. Received: 17 September 1996/Revised: 15 November 1996  相似文献   

15.
Summary Whole-cell and single-channel patch-clamp experiments were performed on unfertilized oocytes of the ascidianCiona intestinalis to investigate the properties of two voltage-dependent Ca2+ currents found in this cell. The peak of the low threshold current (channel I) occurred at –20 mV, the peak of the high-threshold current (channel II) at +20 mV. The two currents could be distinguished by voltage dependence, kinetics of inactivation and ion selectivity. During large depolarizing voltage pulses, a transient outward current was recorded which appeared to be due to potassium efflux through channel II. When the external concentrations of Ca2+ and Mg2+ were reduced sufficiently, large inward Na currents flowed through both channels I and II. Using divalent-free solutions in cell-attached patch recordings, single-channel currents representing Na influx through channels I and II were recorded. The two types of unitary events could be distinguished on the basis of open time (channel I longer) and conductance (channel I smaller). Blocking events during changel I openings were recorded when micromolar concentrations of Ca2+ or Mg2+ were added to the patch pipette solutions. Slopes of the blocking rate constantvs. concentration gave binding constants of 6.4×106 m –1 sec–1 for Mg2+ and 4.5×108 m –1 sec–1 for Ca2+. The Ca2+ block was somewhat relieved at negative potentials, whereas the Mg2+ block was not, suggesting that Ca2+, but not Mg2+, can exit from the binding site toward the cell interior.  相似文献   

16.
The plasma membrane of Chara corallina was made accessible for patch pipettes by cutting a small window through the cell wall of plasmolyzed internodal cells. With pipettes containing Cl as Ca2+ or Ba2+ (50 or 100 mm), but not as Mg2+ or K+ salt, it was possible to record in the cell-attached mode for long periods with little channel activity, randomly interspersed with intervals of transient activation of two Cl channel types (cord conductance at +50 mV: 52 and 16 pS, respectively). During these periods of transient channel activity, variable numbers (up to some 10) of the two Cl channel types activated and again inactivated over several 100 msec in a coordinated fashion. Transient Cl channel activity was favored by voltages positive of the free running membrane voltage (> –45 mV); but positive voltage alone was neither a sufficient nor a necessary condition for activtion of these channels. Neither type of Cl channel was markedly voltage dependent. A third, nonselective 4 pS channel is a candidate for Ca2+ translocation. The activity of this channel does not correlate in time with the transient activity of the Cl channels. The entire set of results is consistent with the following microscopic mechanism of action potentials in Chara, concerning the role of Ca2+ and Cl for triggering and time course: Ca2+ uptake does not activate Cl channels directly but first supplies a membrane-associated population of Ca2+ storage sites. Depolarization enhances discharge of Ca2+ from these elements (none or few under the patch pipette) resulting in a local and transient increase of free Ca2+ concentration ([Ca2+]cyt) at the inner side of the membrane before being scavenged by the cytoplasmic Ca2+ buffer system. In turn, the transient rise in [Ca2+]cyt causes the transient activity of those Cl channels, which are more likely to open at an elevated Ca2+ concentration.The financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.  相似文献   

17.
Summary Endocytotic vesicles from rat kidney cortex, isolated by differential centrifugation and enriched on a Percoll gradient, contain both an electrogenic H+ translocation system and a conductive chloride pathway. Using the dehydration/rehydration method, we fused vesicles of enriched endosomal vesicle preparations and thereby made them accessible to the patch-clamp technique. In the fused vesicles, we observed Cl channels with a single-channel conductance of 73±2 pS in symmetrical 140mm KCl solution (n=25). The current-voltage relationship was linear in the range of –60 to +80 mV, but channel kinetic properties dependended on the clamp potential. At positive potentials, two sublevels of conductance were discernible and the mean open time of the channel was 10–15 msec. At negative voltages, only one substate could be resolved and the mean open time decreased to 2–6 msec. Clamp voltages more negative than –50 mV caused reversible channel inactivation. The channel was selective for anions over cations. Ion substitution experiments revealed an anion permeability sequence of Cl=Br=I>SO 4 2– F. Gluconate, methanesulfonate and cyclamate were impermeable. The anion channel blockers 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS, 1.0mm) and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB, 0.1mm) totally inhibited channel activity. Comparisons with data obtained from radiolabeled Cl-flux measurements and studies on the H+ pump activity in endocytotic vesicle suspensions suggest that the channel described here is involved in maintenance of electroneutrality during ATP-driven H+ uptake into the endosomes.  相似文献   

18.
Summary An anion channel of sarcoplasmic reticulum vesicle has been incorporated into planar lipid bilayers by means of a fusion method and its basic properties were investigated. Analysis of fusion processes suggested that one SR vesicle contained approximately one anion channel. The conductance of this channel has several substates and shows a flickering behavior. The occupation probability of each substate was voltage dependent, which induced an inward rectification of macroscopic currents. Further, the anion channel was found to have the following properties. (1) The single-channel conductance is about 200 pS at 100mm Cl. (2) The channel does not select among monovalent anions but SO 4 2– hardly permeates through the channel. (3) SO 4 2– added to thecis side (the side to which SR vesicles were added) inhibits Cl current competitively in a voltage-dependent manner. (4) An analysis of this voltage dependence suggests that the binding site of SO 4 2– is located at about 36% of the way across the channel from thecis entrance.  相似文献   

19.
The whole-cell patch-clamp technique has been used to study membrane currents in cultured rabbit medullary thick ascending limb (MTAL) epithelial cells. A Ca2+-activated K+ current was characterized by its voltage-dependent and Ca2+-dependent properties. When the extracellular K+ ion concentration was increased from 2 to 140 mm, the rereversal potential (Ek) was shifted from –85 to 0 mV with a slope of 46 mV per e-fold change. The Ca2+-activated K+ current is blocked by charybdotoxin (CTX) in a manner similar to the apical membrane Ca2+-activated K+ channel studied with the single channel patch-clamp technique. The results suggest that the Ca2+-activated K+ current is the predominant, large conductance and Ca2+-dependent K+ pathway in the cultured MTAL cell apical membrane. The biophysical properties and physiological regulation of a Cl current were also investigated. This current was activated by stimulation of intracellular cAMP using forskolin and isobutyl-1-methylxanthine (IBMX). The current-voltage (I–V) relationship of the Cl current showed an outward-rectifying pattern in symmetrical Cl solution. The Cl selectivity of the whole-cell current was confirmed by tail current analysis in different Cl concentration bath solutions. Several Cl channel blockers were found to be effective in blocking the outward-rectifying Cl current in MTAL cells. The cAMP-dependent Cl transport in MTAL cells was further confirmed by measuring changes in the intensity of Cl sensitive dye using fluorescence microscopy. These results suggest that the Cl channel in the apical or basolateral membrane of MTAL cells may be regulated by cAMP-dependent protein-kinase-induced phosphorylation.This study was supported by the National Institutes of Health grants GM46834 to L.L. and DK32753 to W.B.G., and by a Grant-in-Aid from the American Heart Association of Ohio to L.L.  相似文献   

20.
Summary Voltage-clamped steps in the electric potential difference (PD) across the membrane in cells of the green alga,Chara inflata, cause voltage- and time-dependent current flows, interpreted to arise from opening and closing of various types of ion channel in the membrane. With cells in the light, these channels are normally closed, and the resting PD is probably determined by the operation of an H+ efflux pump. Positive steps in PD from the resting level often caused the opening of K+ channels with sigmoid kinetics. The channels began to show opening when the PD–120 mV for an external concentration of K+ of 1.0mm. Return of the PD to the resting level caused closing of the channels with complex kinetics. Various treatments of the cell could cause these K+ channels to open, and remain open continuously, with the PD then lying closer to the Nernst PD for K+. The K+ channels have been identified by the blocking effects of TEA+. Another group of channels, probably Cl and Ca2+ associated with the action potential open when the PD is stepped to values less negative than –50 mV. Negative steps from the resting PD cause the slow opening, with a time course of seconds, of yet another type of channel, probably Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号