首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to clarify the structure and development of rabbit pepsinogens, purification and molecular cloning of these proteins were performed at various developmental stages. Several pepsinogens were isolated, and they were classified as pepsinogens F and M, and into pepsinogen groups I, II, and III. The relative levels and specific activities of the various pepsinogens changed significantly during development. Pepsinogens F and M were present only at the early postnatal stage, and their level was higher than those of other pepsinogens at this stage. Pepsinogens in groups I, II, and III were the predominant zymogens at the late postnatal stage. cDNA clones encoding all of these pepsinogens were obtained, with the exception of pepsinogens I and M, and the nucleotide sequences were determined. Each cDNA contained a leader region (signal peptide), a pro-region (activation segment), and a pepsin region, of 15, 44, and 328 residues, respectively, with the exception of the cDNA for pepsinogen F in which the pro- and pepsin regions were composed of 43 and 330 residues, respectively. Pepsinogens in groups II and III exhibited a high degree of similarity with one another, whereas many substitutions were found in pepsinogen F. A unique substitution in the activation segment of pepsinogen F, namely, Gly----Asp at position 21, was found, which made the structural features of this segment more specific. A phylogenic tree was constructed from the differences in nucleotide sequences and showed clearly that each pepsinogen in groups II and III could be classified as pepsinogen A, a major pepsinogen in mammals. Pepsinogen F diverged significantly from these groups and may be a new type of pepsinogen. Northern analysis revealed that the expression of the gene for pepsinogen F was restricted to the early postnatal stage, and the expression of genes for pepsinogens in groups II and III was detected predominantly at later stages, a result that shows the switching of gene expression from fetal pepsinogen to adult pepsinogens during development.  相似文献   

2.
The APOBEC3 proteins are unique to mammals. Many inhibit retrovirus infection through a cDNA cytosine deamination mechanism. HIV-1 neutralizes this host defense through Vif, which triggers APOBEC3 ubiquitination and degradation. Here, we report an APOBEC3F-like, double deaminase domain protein from three artiodactyls: cattle, pigs and sheep. Like their human counterparts, APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins are DNA cytosine deaminases that locate predominantly to the cytosol and can inhibit the replication of HIV-1 and MLV. Retrovirus restriction is attributable to deaminase-dependent and -independent mechanisms, as deaminase-defective mutants retain significant anti-retroviral activity. However, unlike human APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins have an active N-terminal DNA cytosine deaminase domain, which elicits a broader dinucleotide deamination preference, and they are resistant to HIV-1 Vif. These data indicate that DNA cytosine deamination; sub-cellular localization and retrovirus restriction activities are conserved in mammals, whereas active site location, local mutational preferences and Vif susceptibility are not. Together, these studies indicate that some properties of the mammal-specific, APOBEC3-dependent retroelement restriction system are necessary and conserved, but others are simultaneously modular and highly adaptable.  相似文献   

3.
The pregnancy-associated glycoproteins (PAGs) are placental proteins that have been cloned from swine, sheep, goats, and cattle, but never from animals within the Cervidae family. The goal of this work was to characterize PAGs in white-tailed deer. Placenta and uterine tissues were collected from pregnant does at days 85 and 90 of pregnancy. RNA from cotyledons was used to amplify deer PAGs by RT-PCR. Ten distinct cDNAs were cloned and sequenced. Some normally conserved amino acids comprising the catalytic site were found to be altered in deer PAGs 4, 5, and 8; another PAG, (PAG-9) was a splice variant that lacked exon 7. In each case, these mutations would likely preclude proteolytic activity for these proteins. A phylogenetic analysis revealed that most of the deer PAGs fell within the ancient PAG grouping. The remainder fell within the more modern (BNC-specific) PAG group. Western blotting was performed with anti-PAG antibodies and this analysis revealed that deer PAGs comprise a heterogeneous group based on different antigenicities and electrophoretic mobilities. Immunohistochemistry and in situ hybridization revealed some unique localization patterns of PAGs in the deer placentome compared to those in other ruminants. Most notably, deer PAGs 4 and 5, which according to the phylogeny, are "ancient PAGs," were expected to be present in all trophoblasts; instead, they were localized to the BNC. Although many of the PAGs identified here are very similar to those in Bovidae, some are clearly distinct in their expression pattern and probably possess functional roles unique to cervid reproduction.  相似文献   

4.
Poxviruses are nucleocytoplasmic large DNA viruses encompassing two subfamilies, the Chordopoxvirinae and the Entomopoxvirinae, infecting vertebrates and insects, respectively. While chordopoxvirus genomics have been widely studied, only two entomopoxvirus (EPV) genomes have been entirely sequenced. We report the genome sequences of four EPVs of the Betaentomopoxvirus genus infecting the Lepidoptera: Adoxophyes honmai EPV (AHEV), Choristoneura biennis EPV (CBEV), Choristoneura rosaceana EPV (CREV), and Mythimna separata EPV (MySEV). The genomes are 80% AT rich, are 228 to 307 kbp long, and contain 247 to 334 open reading frames (ORFs). Most genes are homologous to those of Amsacta moorei entomopoxvirus and encode several protein families repeated in tandem in terminal regions. Some genomes also encode proteins of unknown functions with similarity to those of other insect viruses. Comparative genomic analyses highlight a high colinearity among the lepidopteran EPV genomes and little gene order conservation with other poxvirus genomes. As with previously sequenced EPVs, the genomes include a relatively conserved central region flanked by inverted terminal repeats. Protein clustering identified 104 core EPV genes. Among betaentomopoxviruses, 148 core genes were found in relatively high synteny, pointing to low genomic diversity. Whole-genome and spheroidin gene phylogenetic analyses showed that the lepidopteran EPVs group closely in a monophyletic lineage, corroborating their affiliation with the Betaentomopoxvirus genus as well as a clear division of the EPVs according to the orders of insect hosts (Lepidoptera, Coleoptera, and Orthoptera). This suggests an ancient coevolution of EPVs with their insect hosts and the need to revise the current EPV taxonomy to separate orthopteran EPVs from the lepidopteran-specific betaentomopoxviruses so as to form a new genus.  相似文献   

5.
Cytochromeb gene of marine mammals: Phylogeny and evolution   总被引:2,自引:0,他引:2  
The DNA sequences of the mitochondrial cytochromeb gene of marine mammals (Cetacea, Pinnipedia, Sirenia) were compared with cytochromeb genes of terrestrial mammals including the semiaquatic hippopotamus. The comparison included 28 sequences, representing 22 families and 10 orders. The dugong (order Sirenia) sequence associated with that of the elephant, supporting the Tethytheria clade. The fin whale and dolphin (order Cetacea) sequences are more closely related to those of the artiodactyls, and the comparison suggests that the hippopotamus may be the extant artiodactyl species that is most closely related to the cetaceans. The seal sequence may be more closely related to those of artiodactyls, cetaceans, and perissodactyls than to tethytheres, rodents, lagomorphs, or primates. The cytochromeb proteins of mammals do not evolve at a uniform rate. Human and elephant cytochromeb amino acid sequences were found to evolve the most rapidly, while those of myomorph rodents evolved slowest. The cytochromeb of marine mammals evolves at an intermediate rate. The pattern of amino acid substitutions in marine mammals is similar to that of terrestrial mammals.  相似文献   

6.
Lepesheva GI  Virus C  Waterman MR 《Biochemistry》2003,42(30):9091-9101
CYP51 (sterol 14 alpha-demethylase) is an essential enzyme in sterol biosynthetic pathways and the only P450 gene family having catalytically identical orthologues in different biological kingdoms. The proteins have low sequence similarity across phyla, and the whole family contains about 40 completely conserved amino acid residues. Fifteen of these residues lie in the secondary structural elements predicted to form potential substrate recognition sites within the P450 structural fold. The role of 10 of these residues, in the B' helix/BC loop, helices F and G, has been studied by site-directed mutagenesis using as a template the soluble sterol 14 alpha-demethylase of known structure, CYP51 from Mycobacterium tuberculosis (MT) and the human orthologue. Single amino acid substitutions of seven residues (Y76, F83, G84, D90, L172, G175, and R194) result in loss of the ability of the mutant MTCYP51 to metabolize lanosterol. Residual activity of D195A is very low, V87A is not expressed as a P450, and A197G has almost 1 order of magnitude increased activity. After purification, all of the mutants show normal spectral properties, heme incorporation, and the ability to be reduced enzymatically and to interact with azole inhibitors. Profound influence on the catalytic activity correlates well with the spectral response to substrate binding, effect of substrate stabilization on the reduced state of the P450, and substrate-enhanced efficiency of enzymatic reduction. Mutagenesis of corresponding residues in human CYP51 implies that the conserved amino acids might be essential for the evolutionary conservation of sterol 14 alpha-demethylation from bacteria to mammals.  相似文献   

7.
The molecular structure of the archetypal aspartic proteinase, porcine pepsin (EC 3.4.23.1), has been refined using data collected from a single monoclinic crystal on a twin multiwire detector system to 1.8 A resolution. The current crystallographic R-factor (= sigma parallel to Fo/-/Fc parallel to/sigma/Fo/) is 0.174 for the 20,519 reflections with /Fo/ greater than or equal to 3 sigma (Fo) in the range 8.0 to 1.8 A (/Fo/ and /Fc/ are the observed and calculated structure factor amplitudes respectively). The refinement has shown conclusively that there are only 326 amino acid residues in porcine pepsin. Ile230 is not present in the molecule. The two catalytic residues Asp32 and Asp215 have dispositions in porcine pepsin very similar to the dispositions of the equivalent residues in the other aspartic proteinases of known structure. A bound solvent molecule is associated with both carboxyl groups at the active site. No bound ethanol molecule could be identified conclusively in the structure. The average thermal motion parameter of the residues that comprise the C-terminal domain of pepsin is approximately twice that of the residues in the N-terminal domain. Comparisons of the tertiary structure of pepsin with porcine pepsinogen, penicillopepsin, rhizopus pepsin and endothia pepsin reveal that the N-terminal domains are topographically more similar than the conformationally flexible C-terminal domains. The conformational differences may be modeled as rigid-body movements of "reduced" C-terminal domains (residues 193 to 212 and 223 to 298 in pepsin numbering). A similar movement of the C-terminal domain of endothia pepsin has been observed upon inhibitor binding. A phosphoryl group covalently attached to Ser68 O gamma has been identified in the electron density map of porcine pepsin. The low pKa1 value for this group, coupled with unusual microenvironments for several of the aspartyl carboxylate groups, ensures a net negative charge on porcine pepsin in a strongly acid medium. Thus, there is a structural explanation for the very early observations of "anodic migration" of porcine pepsin at pH 1. In the crystals, the molecules are packed tightly into a monoclinic unit cell. There are 190 direct contacts (less than or equal to 4.0 A) between a central pepsin molecule and the five unique symmetry-related molecules surrounding it in the crystalline lattice. The tight packing in this cell makes pepsin's active site and binding cleft relatively inaccessible to substrate analogs or inhibitors.  相似文献   

8.
The mode of action by which entomopoxvirus (EPV) spindles, proteinaceous crystalline bodies produced by EPVs, enhance EPV infection has not been clarified. We fed Anomala cuprea EPV (AcEPV) spindles to host insects; subsequent scanning electron microscopy revealed the disruption of the peritrophic membranes (PMs) of these insects. The PM is reportedly a barrier against the infection of some insects by viruses. Quantitative PCR of AcEPV DNA in the ectoperitrophic area revealed that PM disruption facilitated the passage of EPVs through the PM toward the initial infection site, the midgut epithelium. These results indicate that EPV spindles enhance infection by EPVs by disrupting the PM in the host insects. Fusolin is almost exclusively the constituent protein of the spindles and is the enhancing factor of the infectivity of nucleopolyhedroviruses (NPVs) and possibly that of EPVs. Spheroid is another type of proteinaceous crystalline structure produced by EPVs. Pseudaletia separata EPV (PsEPV) spheroids reportedly contain considerable amounts of fusolin and enhance NPV infection. We assessed the ability of AcEPV spheroids to enhance EPV infectivity and their effect on the PM and carried out immunological experiments; these experiments showed that AcEPV spheroids contain little or no fusolin and are biologically inactive, in contrasts to the situation in PsEPV.  相似文献   

9.
Nikolaidis N  Klein J  Nei M 《Immunogenetics》2005,57(1-2):151-157
In mammals many natural killer (NK) cell receptors, encoded by the leukocyte receptor complex (LRC), regulate the cytotoxic activity of NK cells and provide protection against virus-infected and tumor cells. To investigate the origin of the Ig-like domains encoded by the LRC genes, a subset of C2-type Ig-like domain sequences was compiled from mammals, birds, amphibians, and fish. Phylogenetic analysis of these sequences generated seven monophyletic groups in mammals (MI, MII, and FcI, FcIIa, FcIIb, FcIII, FcIV), two in chicken (CI, CII), four in frog (FI–FIV), and five in zebrafish (ZI–ZV). The analysis of the major groups supported the following order of divergence: ZI [or a common ancestor of ZI and F (a cluster composed of the FcIII and FIII groups)], F, CII (or a common ancestor of CII and MII), MII, and MI–CI. The relationships of the remaining groups were unclear, since the phylogenetic positions of these groups were not supported by high bootstrap values. Two main conclusions can be drawn from this analysis. First, the two groups of mammalian LRC sequences must diverged before the separation of the avian and mammalian lineages. Second, the mammalian LRC sequences are most closely related to the Fc receptor sequences and these two groups diverged before the separation of birds and mammals.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

10.
Although the sister-group relationship between Cetacea and Artiodactyla is widely accepted, the actual artiodactyl group which is closest to Cetacea has not been conclusively identified. In the present study, we have sequenced the complete mitochondrial genome of the hippopotamus, Hippopotamus amphibius, and included it in phylogenetic analyses together with 15 other placental mammals. These analyses separated the hippopotamus from the other suiform included, the pig, and identified the hippopotamus as the artiodactyl sister group of the cetaceans, thereby making both. Artiodactyla and the suborder. Suiformes paraphyletic. The divergence between the hippopotamid and cetacean lineages was calculated using this molecular data and was estimated at ca. 54 Ma BP.  相似文献   

11.
通过PCR扩增,获得OaEPV球状体蛋白基因编码区序列,并进行克隆、测序。分析结果显示,OaEPV球状体蛋白基因编码区全长为2967bp,编码分子量为111kDa的球状体蛋白。同源性分析表明,OaEPV球状体蛋白基因与直翅目昆虫痘病毒关系最近,与鳞翅目和鞘翅目昆虫痘病毒关系较远。对已知的几种昆虫痘病毒球状体蛋白基因做系统进化树,结果显示,以病毒寄主的昆虫分类目作为昆虫痘病毒的分属依据,更符合分子水平的分析结果,也与近年来许多学者所提出的“将鳞翅目与直翅目昆虫痘病毒分为2个不同的属”的观点相一致。对这些球状体蛋白氨基酸序列的疏水性进行分析,表明球状体蛋白的疏水性随寄主昆虫所处的目不同而表现出较大差异,这可能是因为病毒与寄主长期的协同进化的结果。  相似文献   

12.
Bovine binucleate trophoblast giant cells (BNCs) produce large amounts of PAS-positive cytoplasmic granules. After fusion of BNCs with uterine epithelial cells, the contents of these granules are released into the maternal stroma which underlies the uterine epithelium. Histochemically, the granules can be labeled with N-acetylgalactosamine-specific lectins ( Dolichos biflorus, Vicia villosa, and Wisteria floribunda agglutinins) and with Phaseolus vulgaris leucoagglutinin. In this study, we used lectin western blot analysis of proteins from fetal cotyledons to characterize the lectin binding glycoproteins. Lectin western blots showed several bands. A main band of approximately 65 kDa was identified as pregnancy-associated glycoproteins (PAGs) and a double band at 34-35 kDa as prolactin-related protein-I (PRP-I) by their crossreactivity with specific antisera. Enzymatic cleavage of N-linked glycans with peptide- N-glycanase F abolished the lectin binding to PRP and PAGs in western blots, revealing that the lectins bound to asparagine-linked glycans. The high specificity of the lectins was used for the enrichment of PRP-I and PAGs from placental cotyledons with Vicia villosa lectin affinity chromatography. The occurrence of the relatively uncommon asparagine-linked N-acetylgalactosaminyl glycans on secretory proteins of the BNCs suggests a functional role of this specific glycosylation pattern.  相似文献   

13.
The amino-acid sequence of 96 residues in the N-terminal region of rat pepsinogen I was determined and the first 46 residues were found to constitute the activation peptide segment. There was high degree of homology between the activation segments of rat pepsinogen and some pepsinogens A (pig, cow, Japanese monkey and human). However, the number of residues substituted between rat and the other pepsinogens were considerably larger than those among pepsinogens A. In the N-terminal 24 residues of active pepsin, homology (88%) between rat pepsin and human gastricsin was higher than that (50%) between rat pepsin and pepsin A from human or pig. This strongly suggests that rat pepsin should be classified as pepsin C.  相似文献   

14.
15.
Butane-2,3-dione inactivates the aspartyl proteinases from Penicillium roqueforti and Penicillium caseicolum, as well as pig pepsin, penicillopepsin and Rhizopus pepsin, at pH 6.0 in the presence of light but not in the dark. The inactivation is due to a photosensitized modification of tryptophan and tyrosine residues. In the dark none of the amino acid residues, not even arginine residues, is modified even after several days. In the light one arginine residue in pig pepsin is lost at a rate that is comparable with the rate of inactivation; however, the loss of the single arginine residue in the aspartyl proteinase of P. roqueforti and the second arginine residue of pig pepsin is slower than the loss of activity; penicillopepsin is devoid of arginine. Loss of most of the activity is accompanied by the following amino acid losses: P. roqueforti aspartyl proteinase, about two tryptophan and six tyrosine residues; penicillopepsin, about two tryptophan and three tyrosine residues; pig pepsin, about four tryptophan and most of the tyrosine residues. Modification of histidine residues was too slow to contribute to inactivation. None of the other residues, including half-cystine and methionine residues (when present), was modified even after prolonged incubation. The inactivation of P. roqueforti aspartyl proteinase and pig pepsin appears due to non-specific modification of several residues. With penicillopepsin, however, the reaction is more limited and initially affects only those tryptophan and tyrosine residues that lie in the active-site groove. In the presence of pepstatin the rate of inactivation is considerably diminished. After prolonged reaction a general structural breakdown occurs.  相似文献   

16.
Summary The amino acid sequences of the protonmotive cytochromeb from seven representative and phylogenetically diverse species have been compared to identify protein regions or segments that are conserved during evolution. The sequences analyzed included both prokaryotic and eukaryotic examples as well as mitochondrial cytochromeb and chloroplastb 6 proteins. The principal conclusion from these analyses is that there are five protein regions-each comprising about 20 amino acid residues—that are consistently conserved during evolution. These domains are evident despite the low density of invariant residues. The two most highly conserved regions, spanning approximately consensus residues 130–150 and 270–290, are located in extramembrane loops and are hypothesized to constitute part of the Qo reaction center. The intramembrane, hydrophobic protein regions containing the heme-ligating histidines are also conserved during evolution. It was found, however, that the conservation of the protein segments extramembrane to the histidine residues ligating the low potential b566 heme group showed a higher degree of sequence conservation. The location of these conserved regions suggests that these extramembrane segments are also involved in forming the Qo reaction center. A protein segment putatively constituting a portion of the Qi reaction center, located approximately in the region spanned by consensus residues 20–40, is conserved in species as divergent as mouse andRhodobacter. This region of the protein shows substantially less sequence conservation in the chloroplast cytochromeb 6. The catalytic role of these conserved regions is strongly supported by locations of residues that are altered in mutants resistant to inhibitors of cytochromeb electron transport.  相似文献   

17.
Kageyama T 《Biochemistry》2006,45(48):14415-14426
Pepsin B is known to be distributed throughout mammalia, including carnivores. In this study, the proteolytic specificity of canine pepsin B was clarified with 2 protein substrates and 37 synthetic octapeptides and compared with that of human pepsin A. Pepsin B efficiently hydrolyzed gelatin but very poorly hydrolized hemoglobin. It was active against only a group of octapeptides with Gly at P2, such as KPAGF/LRL and KPEGF/LRL (arrows indicate cleavage sites). In contrast, pepsin A hydrolyzed hemoglobin but not gelatin and showed high activity against various types of octapeptides, such as KPAEF/FRL and KPAEF/LRL. The specificity of pepsin B is unique among pepsins, and thus, the enzyme provides a suitable model for analyzing the structure and function of pepsins and related aspartic proteinases. Because Tyr13 and Phe219 in/around the S2 subsites (Glu/Ala13 and Ser219 are common in most pepsins) appeared to be involved in the specificity of pepsin B, site-directed mutagenesis was undertaken to replace large aromatic residues with small residues and vice versa. The Tyr13Ala/Phe219Ser double mutant of pepsin B was found to demonstrate broad activity against hemoglobin and various octapeptides, whereas the reverse mutant of pepsin A had significantly decreased activity. According to molecular modeling of pepsin B, Tyr13 OH narrows the substrate-binding space and a peptide with Gly at P2 might be preferentially accommodated because of its high flexibility. The hydroxyl can also make a hydrogen bond with nitrogen of a P3 residue and fix the substrate main chain to the active site, thus restricting the flexibility of the main chain and strengthening preferential accommodation of Gly at P2. The phenyl moiety of Phe219 is bulky and narrows the S2 substrate space, which also leads to a preference for Gly at P2, while lowering the catalytic activity against other peptide types without making a hydrogen-bonding network in the active site.  相似文献   

18.
19.
20.
The complete amino acid sequence of monkey pepsinogen A   总被引:2,自引:0,他引:2  
The complete amino acid sequence of pepsinogen A from the Japanese monkey (Macaca fuscata) was determined. After converting the pepsinogen to pepsin by activation, the pepsin moiety was reduced and carboxymethylated, cleaved by cyanogen bromide, and the amino acid sequences of the major fragments determined. These fragments were aligned with the aid of overlapping peptides isolated from a chymotryptic digest of intact pepsin. Since the sequence of the activation segment had been determined previously (Kageyama, T., and Takahashi, K. (1980) J. Biochem. (Tokyo) 88, 9-16), the 373-residue sequence of monkey pepsinogen A was established, consisting of the pepsin moiety of 326 residues and the activation segment of 47 residues. Three disulfide bridges and 1 phosphoserine residue were found to be present in the pepsinogen molecule. The molecular weight was calculated to be 40,027 including the phosphate group. Monkey pepsinogen A showed high homology with human (94% identity) and porcine (86% identity) pepsinogens A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号