首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.

Background

Neuro- and vasoprotective effects of poly(ADP-ribose)polymerase (PARP) inhibition have been largely documented in models of cerebral ischemia, particularly with the potent PARP inhibitor PJ34. Furthermore, after ischemic stroke, physicians are faced with incomplete tissue reperfusion and reocclusion, in which platelet activation/aggregation plays a key role. Data suggest that certain PARP inhibitors could act as antiplatelet agents. In that context, the present in vitro study investigated on human blood the potential antiplatelet effect of PJ34 and two structurally different PARP inhibitors, DPQ and INO-1001.

Methods and results

ADP concentrations were chosen to induce a biphasic aggregation curve resulting from the successive activation of both its receptors P2Y1 and P2Y12. In these experimental conditions, PJ34 inhibited the second phase of aggregation; this effect was reduced by incremental ADP concentrations. In addition, in line with a P2Y12 pathway inhibitory effect, PJ34 inhibited the dephosphorylation of the vasodilator stimulated phosphoprotein (VASP) in a concentration-dependent manner. Besides, PJ34 had no effect on platelet aggregation induced by collagen or PAR1 activating peptide, used at concentrations inducing a strong activation independent on secreted ADP. By contrast, DPQ and INO-1001 were devoid of any effect whatever the platelet agonist used.

Conclusions

We showed that, in addition to its already demonstrated beneficial effects in in vivo models of cerebral ischemia, the potent PARP inhibitor PJ34 exerts in vitro an antiplatelet effect. Moreover, this is the first study to report that PJ34 could act via a competitive P2Y12 antagonism. Thus, this antiplatelet effect could improve post-stroke reperfusion and/or prevent reocclusion, which reinforces the interest of this drug for stroke treatment.  相似文献   

2.
Reactive oxygen species, such as myeloperoxidase-derived hypochlorite, induce oxidative stress and DNA injury. The subsequent activation of the DNA-damage-poly(ADP-ribose) polymerase (PARP) pathway has been implicated in the pathogenesis of various diseases, including ischemia-reperfusion injury, circulatory shock, diabetic complications, and atherosclerosis. We investigated the effect of PARP inhibition on the impaired endothelium-dependent vasorelaxation induced by hypochlorite. In organ bath experiments for isometric tension, we investigated the endothelium-dependent and endothelium-independent vasorelaxation of isolated rat aortic rings using cumulative concentrations of acetylcholine and sodium nitro-prusside. Endothelial dysfunction was induced by exposing rings to hypochlorite (100-400 microM). In the treatment group, rings were preincubated with the PARP inhibitor INO-1001. DNA strand breaks were assessed by the TUNEL method. Immunohistochemistry was performed for 4-hydroxynonenal (a marker of lipid peroxidation), nitrotyrosine (a marker of nitrosative stress), and poly(ADP-ribose) (an enzymatic product of PARP). Exposure to hypochlorite resulted in a dose-dependent impairment of endothelium-dependent vasorelaxation of aortic rings, which was significantly improved by PARP inhibition, whereas the endothelium-independent vasorelaxation remained unaffected. In the hypochlorite groups we found increased DNA breakage, lipidperoxidation, and enhanced nitrotyrosine formation. The hypochloride-induced activation of PARP was prevented by INO-1001. Our results demonstrate that PARP activation contributes to the pathogenesis of hypochlorite-induced endothelial dysfunction, which can be prevented by PARP inhibitors.  相似文献   

3.
Benkö R  Pacher P  Vaslin A  Kollai M  Szabó C 《Life sciences》2004,75(10):1255-1261
Oxidant-mediated activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) plays a role in the development of endothelial dysfunction and the pathogenesis of various cardiovascular diseases. The aim of the current study was to investigate whether activation of PARP contributes to the development of endothelial dysfunction in the apolipoprotein E (ApoE) deficient mice. We tested whether PARP inhibition prevents the development of endothelial dysfunction and whether it restores function in vessels with established endothelial dysfunction. ApoE deficient mice were kept on high-fat diet for 12 weeks with and without INO-1001 treatment. Chronic treatment with the PARP inhibitor INO-100 reduced the degree of the endothelial dysfunction (the ability of the vessel to relax to acetylcholine) in the thoracic aortae of ApoE deficient mice. In addition, in vitro incubation of vessels from ApoE deficient mice with established endothelial dysfunction with the PARP inhibitor acutely improved the ability of the rings to relax to acetylcholine. We conclude that the early atherosclerotic functional alterations that develop in the endothelium of the ApoE deficient mice are, at least in part, reversible, and are dependent on the activation of the nuclear enzyme PARP in the endothelial cells.  相似文献   

4.
Angiotensin II (AII) contributes to the pathogenesis of many cardiovascular disorders. Oxidant-mediated activation of poly(adenosine diphosphate-ribose) polymerase (PARP) plays a role in the development of endothelial dysfunction and the pathogenesis of various cardiovascular diseases. We have investigated whether activation of the nuclear enzyme PARP contributes to the development of AII-induced endothelial dysfunction. AII in cultured endothelial cells induced DNA single-strand breakage and dose-dependently activated PARP, which was inhibited by the AII subtype 1 receptor antagonist, losartan; the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, apocynin; and the nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester. Infusion of sub-pressor doses of AII to rats for 7 to 14 d induced the development of endothelial dysfunction ex vivo. The PARP inhibitors PJ34 or INO-1001 prevented the development of the endothelial dysfunction and restored normal endothelial function. Similarly, PARP-deficient mice infused with AII for 7 d were found resistant to the AII-induced development of endothelial dysfunction, as opposed to the wild-type controls. In spontaneously hypertensive rats there was marked PARP activation in the aorta, heart, and kidney. The endothelial dysfunction, the cardiovascular alterations and the activation of PARP were prevented by the angiotensin-converting enzyme inhibitor enalapril. We conclude that AII, via AII receptor subtype 1 activation and reactive oxygen and nitrogen species generation, triggers DNA breakage, which activates PARP in the vascular endothelium, leading to the development of endothelial dysfunction in hypertension.  相似文献   

5.
T Matsuo  T Yamada  Y Chikahira  S Kadowaki 《Blut》1989,59(4):393-395
The present report describes the management of a 75-year-old uremic patient with delayed-onset heparin-induced thrombocytopenia and clot formation in extracorporeal circulation. The test for serum heparin-dependent platelet aggregation factor was positive and the serum platelet binding IgG (PBIgG) became elevated after the onset of heparin-induced thrombocytopenia. He required continuous exposure to heparin for hemodialysis. One gram of aspirin daily was begun to prevent clot formation in the circuit. Hemodialysis with full heparinization was achieved with no clot formation in the circuit. After aspirin ingestion, the increased level of patient's PBIgG in the presence of heparin and thrombocytopenia were restored to normal. Inhibition of platelet aggregation with aspirin allowed uneventful dialysis in a patient with heparin-induced thrombocytopenia.  相似文献   

6.
The phorbol ester 12-0-tetradecanoyl-phorbol-13-acetate, a potent tumor-promoting agent, caused irreversible platelet aggregation when more than 0.02 µM was stirred with human citrated or heparinized platelet-rich plasma (PRP). With washed platelets, 1 nM was effective. The alcohol phorbol, which has little tumor-promoting activity, failed to cause platelet aggregation. With all but low concentrations of phorbol ester, aggregation was succeeded by a rapid phase. The latter was prevented or reduced by enzymes which destroy ADP and by aspirin, was associated with a change in platelet shape, and was presumably due to released ADP. At higher concentrations, only a rapid phase was seen, and these inhibitors were not effective. Low concentrations did not aggregate platelets in PRP containing sufficient EDTA or EGTA to chelate ionized calcium or in PRP from thrombasthenic patients; higher concentrations caused slight aggregation. Both the primary, non-ADP-dependent aggregation and the rapid ADP-dependent aggregation were markedly inhibited by substances which increase cyclic AMP, metabolic inhibitors, and the sulfhydryl inhibitor N-ethylmaleimide. Phorbol ester reduced platelet cyclic AMP only when it had been previously elevated by prostaglandin E1. 1 µM did not release β-glucuronidase, lactic dehydrogenase, or inflammatory material from platelets in 4–5 min despite marked aggregation, but liberated all three in 30 min. The possibility is discussed that low phorbol ester concentrations cause primary aggregation by a direct action on platelet actomyosin.  相似文献   

7.
BackgroundIn patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary PCI, few data exist on the magnitude of platelet activation, aggregation and dosing of glycoprotein (GP) IIb/IIIa receptor inhibitors. Methods Sixty STEMI patients were randomised to abciximab, to high-dose tirofiban or to no additional GP IIb/IIIa inhibitor treatment. Platelet activation (P-selectin expression) was measured using flow cytometry and the level of inhibition of platelet aggregation was assessed using the Plateletworks assay. Additionally, the PFA-100 with the collagen/adenosine-diphosphate cartridge (CADP) was used to compare the levels of platelet inhibition. All measurements were performed at baseline (T0), immediately after (T1), 30 minutes (T2), 60 minutes (T3) and 120 minutes (T4) after primary PCI. Results The level of platelet activation in both GP IIb/IIIa receptor inhibitor treated groups was significantly lower compared with the control group at all time points after primary PCI (p=0.04). Also the administration of the currently recommended dose of abciximab resulted in significantly lower levels of inhibition of aggregation compared with high-dose tirofiban (p<0.0001). In addition, the CADP closure times were significantly prolonged in both GP IIb/IIIa inhibitor treated groups compared with the control group at time points T1 (p=0.006) and T4 (p<0.0001). Conclusion The administration of high-dose tirofiban resulted in a significantly higher inhibition of platelet aggregation compared with the currently recommended dose of abciximab. Large clinical trials are needed to assess whether this laboratory superiority of high-dose tirofiban translates into higher clinical efficacy. (Neth Heart J 2007;15:375-81.)  相似文献   

8.
We investigated the role of the nuclear enzyme poly (ADP ribose) synthetase (PARS) in the pathogenesis of combined burn and smoke inhalation (burn/smoke) injury in an ovine model. Eighteen sheep were operatively prepared for chronic study. PARS inhibition was achieved by treatment with a novel and selective PARS inhibitor INO-1001. The PARS inhibitor attenuated 1) lung edema formation, 2) deterioration of gas exchange, 3) changes in airway blood flow, 4) changes in airway pressure, 5) lung histological injury, and 6) systemic vascular leakage. Lipid oxidation and plasma nitrite/nitrate (stable breakdown products of nitric oxide) levels were suppressed with the use of INO-1001. We conclude that PARS inhibition attenuates various aspects of the pathophysiological response in a clinically relevant experimental model of burn/smoke inhalation injury.  相似文献   

9.
Cardiac fibrosis is involved in nearly all forms of heart diseases and is characterized by excessive deposition of extracellular matrix proteins by cardiac fibroblasts (CFs). We and others have reported the possibility of poly(ADP-ribose) polymerase 1 (PARP1), the founding subtype of the PARPs enzyme family, as a novel therapeutic target of heart diseases. The cardiac fibrotic induction of mammalian target of rapamycin (mTOR) is mainly due to collagen expression, Smad3- and p53/JNK-mediated apoptosis. However, the possible link between PARP1 and mTOR in the progression of cardiac fibrosis remains unclear. In this study, PARP1 protein expression, and the activity of mTOR and its three target substrates (p70 ribosomal S6 Kinase 1, eukaryotic initiation factor 4E­-binding protein 1, and UNC­51­like kinase 1) were augmented; meanwhile, the nicotinamide adenine dinucleotide (NAD) content was significantly reduced in the process of cardiac fibrosis in vivo and in vitro. Sprague-Dawley rats were intraperitoneally injected with 3-aminobenzamide (3AB) (20 mg/kg/d; a well-established PARP1 inhibitor) or rapamycin (Rapa; 1 mg/kg/d; used for mTOR inhibition) 7 days after abdominal aortic constriction (AAC) surgery for 6 weeks. Pretreatment of 3AB or Rapa both relieved AAC-caused cardiac fibrosis and heart dysfunction. Overexpression of PARP1 with adenovirus carrying PARP1 gene specifically transduced into the hearts via intramyocardial multipoint injection caused similar myocardial damage. In CFs, preincubation with PARP1 or mTOR inhibitors all blocked TGF-β1 induced cardiac fibrosis. PARP1 overexpression evoked cardiac fibrosis, which could be antagonized by mTOR inhibitors or NAD supplementation in CFs. These results provide novel and compelling evidence that PARP1 exacerbated cardiac fibrosis, which was partially attributed to NAD-dependent activation of mTOR.  相似文献   

10.
Poly (ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington’s disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD. In this study, we sought to determine if the PARP-1 inhibitor exerts a neuroprotective effect in R6/2 mutant mice, which recapitulates, in many aspects, human HD. Transgenic mice were treated with the PARP-1 inhibitor INO-1001 mg/Kg daily starting from 4 weeks of age. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that INO 1001-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as striatal atrophy, morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. INO-1001 was effective in significantly increasing activated CREB and BDNF in the striatal spiny neurons, which might account for the beneficial effects observed in this model. Our findings show that PARP-1 inhibition could be considered as a valid therapeutic approach for HD.  相似文献   

11.

Background  

GPIIb/IIIa inhibitors abciximab and eptifibatide have been shown to inhibit platelet aggregation in ischemic heart disease. Our aim was to test the efficacy of abiciximab (Reo Pro) or eptifibatide (Integrilin) alone or in combination with plasminogen activator (t-PA) in an experimental model of ischemia reperfusion (I/R) in hamster cheek pouch microcirculation visualized by fluorescence microscopy. Hamsters were treated with saline, or abiciximab or eptifibatide or these drugs combined with t-PA infused intravenously 10 minutes before ischemia and through reperfusion. We measured the microvessel diameter changes, the arteriolar red blood cell (RBC) velocity, the increase in permeability, the perfused capillary length (PCL), and the platelet and leukocyte adhesion on microvessels.  相似文献   

12.
Platelet function is critically important in the acute-care settings of cardiopulmonary bypass surgery and percutaneous coronary intervention, which are commonly associated with the adverse vascular events of hemorrhage and thrombosis, respectively. To improve outcomes, it has been suggested that patients should be screened for platelet count and function periprocedurally, and therapeutic intervention including the possible use of thrombolytics and adequate anticoagulation or administration of antiplatelet agents, should be utilized. Antiplatelet therapy including aspirin (acetylsalicylic acid), the thienopyridines (clopidopgrel), and parenteral anti-glycoprotein (GP) IIb/IIIa agents (abciximab, tirofiban, and eptifibatide) are recognized as clinically important in patients at risk of developing thrombotic events. Recently, it has been recognized that empiric therapeutic administration of these agents may be suboptimal in clinical environments because of interpatient variability with regard to platelet count, platelet response, receptor concentration on the platelet, and other factors. Hence there is a clinical need to monitor such therapies on an individual basis. Traditional platelet tests including light transmission aggregometry (LTA) are inconvenient for acute diagnostic testing because of the complexity of the test and the requirement for specialty training. Hence, 'near-patient' test systems have recently been introduced. Plateletworks is an in vitro diagnostic, point-of-care test platform that has demonstrated utility in monitoring platelet response to all current antiplatelet agents including aspirin and clopidogrel.  相似文献   

13.
Platelets contain high levels of Src family kinases (SFKs), but their functional role downstream of G protein pathways has not been completely understood. We found that platelet shape change induced by selective G(12/13) stimulation was potentiated by SFK inhibitors, which was abolished by intracellular calcium chelation. Platelet aggregation, secretion, and intracellular Ca(2+) mobilization mediated by low concentrations of SFLLRN or YFLLRNP were potentiated by SFK inhibitors. However, 2-methylthio-ADP-induced intracellular Ca(2+) mobilization and platelet aggregation were not affected by PP2, suggesting the contribution of SFKs downstream of G(12/13), but not G(q)/G(i), as a negative regulator to platelet activation. Moreover, PP2 potentiated YFLLRNP- and AYPGKF-induced PKC activation, indicating that SFKs downstream of G(12/13) regulate platelet responses through the negative regulation of PKC activation as well as calcium response. SFK inhibitors failed to potentiate platelet responses in the presence of G(q)-selective inhibitor YM254890 or in G(q)-deficient platelets, indicating that SFKs negatively regulate platelet responses through modulation of G(q) pathways. Importantly, AYPGKF-induced platelet aggregation and PKC activation were potentiated in Fyn-deficient but not in Lyn-deficient mice compared with wild-type littermates. We conclude that SFKs, especially Fyn, activated downstream of G(12/13) negatively regulate platelet responses by inhibiting intracellular calcium mobilization and PKC activation through G(q) pathways.  相似文献   

14.
Highly selective and potent factor VIIa-tissue factor (fVIIa.TF) complex inhibitors were generated through structure-based design. The pharmacokinetic properties of an optimized analog (9) were characterized in several preclinical species, demonstrating pharmacokinetic characteristics suitable for once-a-day dosing in humans. Analog 9 inhibited platelet and fibrin deposition in a dose-dependent manner after intravenous administration in a baboon thrombosis model, and a pharmacodynamic concentration-response model was developed to describe the platelet deposition data. Results for heparin and enoxaparin (Lovenox) in the baboon model are also presented.  相似文献   

15.
The present study was designed to identify novel membrane proteins that signal during platelet aggregation. Because one putative mechanism for signaling by a membrane protein involves phosphorylation, we used oligonucleotide-based microarray analyses and mass spectrometric proteomics techniques to specifically discover membrane proteins and also identify those proteins that become phosphorylated on tyrosine, threonine, or serine residues upon platelet aggregation. Surprisingly, both techniques converged to identify a novel membrane protein we have termed PEAR1 (platelet endothelial aggregation receptor 1). Sequence analysis of PEAR1 predicts a type-1 membrane protein, 15 extracellular epidermal growth factor-like repeats, and multiple cytoplasmic tyrosines. Analysis of the tissue distribution of PEAR1 showed that it was most highly expressed in platelets and endothelial cells. Upon platelet aggregation induced by physiological agonists, PEAR1 became phosphorylated on tyrosine (Tyr-925), and serine (Ser-953 and Ser-1029) residues. PEAR1 tyrosine phosphorylation was blocked by eptifibatide, an alpha(IIb)beta(3) antagonist, which inhibits platelet aggregation. Immune clustering of PEAR1 resulted in PEAR1 phosphorylation. Aggregation-induced PEAR1 tyrosine phosphorylation lead to the subsequent association with the ShcB adaptor protein. Platelet proximity induced by centrifugation also induced PEAR1 tyrosine phosphorylation, a reaction not inhibited by eptifibatide. These data suggest that PEAR1 is a novel platelet receptor that signals secondary to alpha(IIb)beta(3)-mediated platelet-platelet contacts.  相似文献   

16.
Platelet aggregation inducer and inhibitor were isolated from Echis carinatus snake venom. The venom inducer caused aggregation of washed rabbit platelets which could be inhibited completely by heparin or hirudin. The venom inducer also inhibit both the reversibility of platelet aggregation induced by ADP and the disaggregating effect of prostaglandin E1 on the aggregation induced by collagen in the presence of heparin. The venom inhibitor decreased the platelet aggregation induced by collagen, thrombin, ionophore A23187, arachidonate, ADP and platelet-activating factor (PAF) with an IC50 of around 10 μg/ml. It did not inhibit the agglutination of formaldehyde-treated platelets induced by polylysine. In the presence of indomethacin or in ADP-refractory platelets or thrombin-degranulated platelets, the venom inhibitor further inhibited the collagen-induced aggregation. Fibrinogen antagonized competitively the inhibitory action of the venom inhibitor in collagen-induced aggregation. In chymotrypsin-treated platelets, the venom inhibitor abolished the aggregation induced by fibrinogen. It was concluded that the venom inducer caused platelet aggregation indirectly by the conversion of prothrombin to thrombin, while the venom inhibitor inhibited platelet aggregation by interfering with the interaction between fibrinogen and platelets.  相似文献   

17.
Glycoprotein IIb/IIIa receptor inhibitors represent a relatively new therapeutic approach in the field of antiplatelet therapy. Following the development of abciximab a number of small molecule GPIIb/IIIa inhibitors have been introduced such as tirofiban and eptifibatide. In this fast-moving field the interventional cardiologist needs a framework to guide decision-making for the individual patient. This review covers the efficacy and safety data from the clinical trials of GPIIb/IIIa inhibitors in the context of patients undergoing percutaneous coronary intervention for unstable angina/non-Q-wave myocardial infarction. There is an increasing body of evidence to support the efficacy of GPIIb/IIIa inhibitors in reducing the risk of adverse ischemic events in high and low risk patients undergoing percutaneous coronary intervention. A number of unresolved efficacy and safety issues remain, including the duration of treatment before and after intervention; whether a reduction in the heparin dose would further decrease the risk of hemorrhage without affecting the periprocedural thrombotic rate in patients undergoing PTCA with adjunctive GPIIb/IIIa inhibitors; and the cost-effectiveness of this therapy. When a thorough analysis of cost-effectiveness has been made, it will be easier to advocate the widespread use of these agents in all patients undergoing coronary intervention.  相似文献   

18.
OBJECTIVE: To compare aspirin with anticoagulation with regard to risk of cardiac death and reinfarction in patients who received anistreplase thrombolysis for myocardial infarction. DESIGN: A multicentre unblinded randomised clinical trial. SETTING: 38 hospitals in six countries. SUBJECTS: 1036 patients who had been treated with anistreplase for myocardial infarction were randomly assigned to either aspirin (150 mg daily) or anticoagulation (intravenous heparin followed by warfarin or other oral anticoagulant). The trial was stopped earlier than originally intended because of the slowing rate of recruitment. MAIN OUTCOME MEASURE: Cardiac death or recurrent myocardial infarction at 30 days. RESULTS: After 30 days cardiac death or reinfarction, occurred in 11.0% (57/517) of the patients treated with anticoagulation and 11.2% (58/519) of the patients treated with aspirin (odds ratio 1.02, 95% confidence interval 0.69 to 1.50, P = 0.92). Corresponding findings at three months were 13.2% (68/517) and 12.1% (63/519) (0.91, 0.63 to 1.32, P = 0.67). Patients receiving anticoagulation were more likely than patients receiving aspirin to have had severe bleeding or a stroke by three months (3.9% v 1.7% (0.44, 0.20 to 0.97, P = 0.04)). CONCLUSION: No evidence of a difference in the incidence of cardiac events was found between the two treatment groups, though the trial is too small to claim treatment equivalence confidently. A higher incidence of severe bleeding events and strokes was detected in the group receiving anticoagulation, suggesting that aspirin may be the drug of choice for most patients in this context.  相似文献   

19.
The role of prostacyclin in vascular tissue.   总被引:12,自引:0,他引:12  
Prostacyclin (PGI2) generated by the vascular wall is a potent vasodilator, and the most potent endogenous inhibitor of platelet aggregation so far discovered. Prostacyclin inhibits platelet aggregation by increasing cyclic AMP levels. Prostacyclin is a circulating hormone continually released by the lungs into the arterial circulation. Circulating platelets are, therefore, subjected constantly to prostacyclin stimulation and it is via this mechanism that platelet aggregability in vivo is controlled. Moreover, phosphodiesterase inhibitors such as dipyridamole or theophylline exert their antithrombotic actions by potentiating circulating prostacyclin. The prostacyclin:thromboxane A2 ratio is important in the control of thrombus formation; manipulation of this ratio by small doses of aspirin (which will inhibit mainly platelet cyclooxygenase), a selective inhibitor of thromboxane formation, or the dietary use of a fatty acid like eicosapentaenoic acid (which would be the precursor for a delta17-prostacyclin (PGI3) but is transformed by the platelets into nonaggregating thromboxane A3) might have beneficial effects as antithrombotic therapies. Prostacyclin has interesting potential for clinical application in conditions where enhanced platelet aggregation is involved or to increase biocompatibility of extracorporeal circulation systems.  相似文献   

20.
Anti-platelet therapy plays an important role in the treatment of patients with thrombotic diseases. The most commonly used anti-platelet drugs, namely, aspirin, ticlopidine, and clopidogrel, are effective in the prevention and treatment of cardio-cerebrovascular diseases. Glycoprotein IIb/IIIa antagonists (e.g., abciximab, eptifibatide and tirofiban) have demonstrated good clinical benefits and safety profiles in decreasing ischemic events in acute coronary syndrome. However, adverse events related to thrombosis or bleeding have been reported in cases of therapy with glycoprotein IIb/IIIa antagonists. Cilostazol is an anti-platelet agent used in the treatment of patients with peripheral ischemia, such as intermittent claudication. Presently, platelet adenosine diphosphate P2Y(12) receptor antagonists (e.g., clopidogrel, prasugrel, cangrelor, and ticagrelor) are being used in clinical settings for their pronounced protective effects. The new protease-activated receptor antagonists, vorapaxar and atopaxar, potentially decrease the risk of ischemic events without significantly increasing the rate of bleeding. Some other new anti-platelet drugs undergoing clinical trials have also been introduced. Indeed, the number of new anti-platelet drugs is increasing. Consequently, the efficacy of these anti-platelet agents in actual patients warrants scrutiny, especially in terms of the hemorrhagic risks. Hopefully, new selective platelet inhibitors with high anti-thrombotic efficiencies and low hemorrhagic side effects can be developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号