首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S S Fojo  M C Wu  M A Gross  Y Purcell  A A Yunis 《Biochemistry》1978,17(15):3109-3116
Conditioned medium prepared from human autopsy lung tissue contains high level activity of colony stimulating factor which stimulates granulocytes and macrophage colony formation in both mouse and human bone marrow. The lung colony stimulating factor has been purified about 2250-fold by methods including hydroxylapatite chromatography, preparative gel electrophoresis, preparative isoelectric focusing, and gel filtration chromatography. The final specific activity was 2.7 X 10(6) units/mg. The purified factor has a molecular weight of 41 000 as determined by gel filtration. It is stable at the pH range of 6.5--10 and 56 degrees C for 30 min but sensitive to protease digestion and periodate oxidation. On polyacrylamide gel electrophoresis, it migrates in the alpha-globulin post-albumin region. Upon isoelectrofocusing lung colony stimulating factor appears heterogeneous with isoelectric points of 3.7--4.3. Treatment with neuraminidase did not affect its activity, but caused a change in electrophoretic mobility and isoelectric point. Antibody produced by immunizing rabbits with partially purified lung colony stimulating factor exerted strong inhibitory activity on the factor from lung as well as on colony stimulating factor from other human sources including serum, urine, and placenta.  相似文献   

2.
Serum-free conditioned medium from human lung obtained at autopsy provides a rich source of colony stimulating factor which stimulates granulocytic and macrophagic colony growth in both mouse and human bone marrow. The appearance of the factor is enhanced by endotoxin and inhibited by either puromycin or actinomycin D. Human lung colony stimulating factor is stable at the pH range of 6.5-10 and temperature of 56 degrees C for 30 min. It is resistant to trypsin and neuraminidase but is sensitive to subtilisin, chymotrypsin and periodate. It shows heterogeneity on Sephadex gel filtration with two activity peaks having molecular weight of 200 000 and 40 000, respectively. Upon gel electrophoresis, human lung colony stimulating factor migrates in the alpha-globulin post-albumin region. Using the combination procedures of hydroxyapatite chromatography and preparative polyacrylamide gel electrophoresis a 600-fold purification was achieved with a final specific activity of 6-10(5) units per mg protein. The purified colony stimulating factor is very labile; however, the activity can be stabilized by the addition of gelatin or bovine serum albumin at the concentration of 0.1% and 0.2 mg/ml, respectively.  相似文献   

3.
Isolation of colony stimulating factor from human milk   总被引:1,自引:0,他引:1  
Human milk contains colony stimulating factor (CSF), a polypeptide growth factor, which stimulates in in vitro bone marrow culture proliferation and differentiation of colony forming granulocytic macrophage progenitor cells (CFU-GM) to form colonies. This activity was not found in either bovine milk or colostrum when assayed in human or mouse bone marrow cells. The human milk CSF activity is destroyed by treatment with proteases. However, neither 6M urea, 4M guanidine hydrochloride, 5 mM dithiothreitol, nor exposure to pH 2 will inactivate the milk derived CSF. Gel filtration and isoelectric focusing indicate that human milk CSF differs biochemically from the other CSFs isolated from various sources and has a molecular weight between 250,000 and 240,000 and an isoelectric point between 4.4 and 4.9.  相似文献   

4.
Medium conditioned by human peripheral blood leukocytes (HLCM) was studied for its in vitro effects on haemopoietic progenitor cells (CFU-s and CFU-c) present in mouse bone marrow. HLCM has poor colony stimulating activity in semi-solid cultures of mouse bone marrow cells, but invariably increases the number of colonies obtained in the presence of plateau levels of semi-purified colony stimulating factor (CSF). In liquid cultures, HLCM appears to contain a potent initiator of DNA synthesis in CFU-s, an activity which coincides with an increased CFU-s maintenance and causes a three- to four-fold increase in CFU-c number. It is apparent from this study that HLCM, in addition to stimulating colony formation in cultures of human bone marrow cells, has a profound in vitro effect on primitive haemopoietic progenitor cells of the mouse, which cannot be attributed to CSF.  相似文献   

5.
Medium conditioned by human peripheral blood leukocytes (HLCM) was studied for its in vitro effects on haemopoietic progenitor cells (CFU-s and CFU-c) present in mouse bone marrow. HLCM has poor colony stimulating activity in semi-solid cultures of mouse bone marrow cells. but invariably increases the number of colonies obtained in the presence of plateau levels of semi-purified colony stimulating factor (CSF). In liquid cultures, HLCM appears to contain a potent initiator of DNA synthesis in CFU-s. an activity which coincides with an increased CFU-s maintenance and causes a three- to four-fold increase in CFU-c number. It is apparent from this study that HLCM, in addition to stimulating colony formation in cultures of human bone marrow cells, has a profound in vitro effect on primitive haemopoietic progenitor cells of the mouse, which cannot be attributed to CSF.  相似文献   

6.
Using a modification of the agar gel method for bone marrow culture, serum from various strains of mice has been tested for colony stimulating activity. Ninety percent of sera from AKR mice with spontaneous or transplanted lymphoid leukemia and 40–50% of sera from normal or preleukemic AKR mice stimulated colony formation by C57B1 bone marrow cells. Sera from 6% of C3H and 30% of C57B1 mice stimulated similar colony formation. The incidence of sera with colony stimulating activity rose with increasing age. All colonies were initially mainly granulocytic in nature but later became pure populations of mononuclear cells. Bone marrow cells exhibited considerable variation in their responsiveness to stimulation by mouse serum. Increasing the serum dose increased the number and size of bone marrow cell colonies and with optimal serum doses, 1 in 1000 bone marrow cells formed a cell colony. Preincubation of cells with active serum did not stimulate colony formation by washed bone marrow cells. The active factor in serum was filterable, non-dialysable and heat and ether labile.  相似文献   

7.
Hemopoietic colony formation in agar occurred spontaneously in mass cultures of marrow cells obtained from a number of species (guinea pig, rat, lamb, rabbit, pig, calf, human and Rhesus monkey). This contrasted with the observation that colony formation by mouse bone marrow exhibited an absolute requirement for an exogenous source of a colony stimulating factor. Analysis of spontaneous colony formation in Rhesus monkey marrow cultures revealed the presence of a cell type in hemopoietic tissue, capable of elaborating colony stimulating factor when used to condition media or as feeder layers. Equilibrium density gradient centrifugation separated colony stimulating cells from in vitro colony forming cells in monkey bone marrow. Separation studies on spleen, blood and marrow characterized the stimulating cells as of intermediate density, depleted or absent in fractions enriched for cells of the granulocytic series and localized in regions containing lymphocytes and monocytes. Adherence column separation of peripheral blood leukocytes showed the stimulating cells to be actively adherent, unlike the majority of lymphocytes, and combined adherence column and density separation indicated that stimulating cells were present in hemopoietic tissue within the population of adherent lymphocytes or monocytes.  相似文献   

8.
Nowadays, increased use of nanomaterials in industry and biomedicine poses potential risks to human health and the environment. Studying their possible toxicological effects is therefore of great significance. The present investigation was designed to examine the status of oxidative stress induced by nanoparticles (NPs) of ferric oxide (Fe2O 3) and titanium oxide (TiO 2) with their micro-sized counterpart on mouse lung and bone marrow–derived normal tissue cells. We assessed the induction of oxidative stress by measuring its indicators such as antioxidant scavenging activity of superoxide dismutase and catalase as well as malondialdehyde concentration. Moreover, colony formation of bone marrow cells was assayed following induction with colony stimulating factor (CSF) from lung cells. NPs had a more potent stimulatory effect on the oxidative stress status than their micron-sized counterparts. In addition, the highest level of oxidative stress derived from TiO 2 NPs was observed in both tissue types. Cotreatment with NPs and the antioxidant α-tocopherol reduced antioxidant activities and membrane lipid peroxidation (LPO) in the lung cells, but increased CSF-induced colony formation activity of bone marrow cells, suggesting that oxidative stress may be the cause of the cytotoxic effects of NPs. It is concluded that free radicals generated following exposure to NPs resulted in significant oxidative stress in mouse cells, indicated by increased LPO and antioxidant enzyme activity and decreased colony formation.  相似文献   

9.
Granulocyte-Macrophage colony stimulating factor (GM-CSF) and Granulocyte colony stimulating factor (G-CSF) are cytokines involved in the differentiation of bone marrow progenitor cells into myeloid cells. They also activate mature myeloid cells to mediate a variety of antimicrobial activities and inflammatory responses. Recombinant GM-CSF and G-CSF proteins have been used to treat various diseases including cancer and hematopoietic diseases and to isolate peripheral blood progenitor cells for bone marrow transplantation. A plasmid construct expressing recombinant human G-CSF/GM-CSF fusion protein has now been prepared by linking the human G-CSF and GM-CSF coding regions and the recombinant fusion protein has been successfully expressed in E. coli. The recombinant human G-CSF/GM-CSF fusion protein was extracted and purified from the cellular inclusion and refolded into the biologically active form to show colony stimulating activity. The recombinant fusion protein exhibited colony stimulating activity on human bone marrow cell cultures, indicating that the linkage of GM-CSF and G-CSF by a linker peptide may not interrupt activities of the cytokines in the fusion protein. The colony forming unit of the fusion protein was also higher than those of the cultures treated with the same molar numbers of the recombinant human GM-CSF and G-CSF separately, which suggests that the fusion protein presumably retains both G-CSF and GM-CSF activities.  相似文献   

10.
Medium conditioned by excised whole lungs from endotoxin-injected C57BL mice was highly active in stimulating hemopoietic colony formation, particularly of granulocytic type, in agar cultures of mouse bone marrow cells. The colony stimulating factor (CSF) in this material had an α12 electrophoretic mobility, was eluted from calcium phosphate gel by 0.04 M phosphate buffer and had an unusually low apparent S20W of 1.9. Sequestered polymor-phonuclear neutrophils were excluded as a major source of this CSF. The high specific activity and ease of preparation of lung conditioned medium make it valuable both for the large scale production of CSF and as a source of an unusual type of CSF.  相似文献   

11.
Summary Two continuous cell lines derived from long-term cultures of AKR mouse bone marrow adherent cells were isolated. These cell lines release colony stimulating activity (CSA), a factor that induces in vitro differentiation of granulocyte-macrophage progenitor cells. The colony forming cells and cluster forming cells in mouse marrow responsive to CSA from cell line conditioned medium were compared with those responsive to CSA from mouse lung conditioned medium (MLCM). Colony forming cells were characterized by analysis of their density distribution after equilibrium centrifugation in density gradient. Cluster forming cells were characterized by analyzing the progeny of individual clusters after transfer to fresh semisolid culture medium containing MLCM. The results obtained indicate that the CSA from cell line conditioned medium closely compares with the CSA from MLCM in terms of the populations of colony and cluster forming cells stimulated. This work was supported by a research grant from the Institut National de la Santé et de la Recherche Médicale (CRL 802620), Paris, France.  相似文献   

12.
Colony formation and growth in vitro by C57B1 mouse bone marrow cells were analysed following stimulation by a standard dose of serum colony stimulating factor. Under restricted conditions, colony crowding was observed to potentiate colony growth rates. The addition of thymic or lymph node lymphoid cells or nonviable bone marrow cells also potentiated colony growth. Extensive reutilisation of nuclear material by bone marrow colony cells was observed when labeled lymphoid and bone marrow cells were added to the culture system. The results provide evidence that lymphocytes can exert trephocytic effects on proliferating hematopoietic cells.  相似文献   

13.
W D Gassel  K Havemann 《Blut》1978,36(2):73-80
Marked inhibition of colony formation is observed after incubation of mouse and human bone marrow cells with the human granulocytic neutral proteases elastase and chymotrypsin as well as with pancreatic chymotrypsin. The corresponding enzymes inactivated with diisopropylfluorophosphate were almost inactive. Incubation of different colony inducing agents either resulted in no change or in an increase of their colony stimulating activity. The data suggest a direct proteolytic action of the proteases on colony forming cells which may alter receptor sites for colony stimulating activities.  相似文献   

14.
人骨髓细胞体外培养液中含有高活力的 CSF,在长期培养过程中,CSF 活力的变化,与 CFU-C 数量的变化有大致平行的趋势。这种 CSF 对狗和小鼠也同样有效。人骨體条件液中的 CSF 对培养中的 CFU-S 也有明显的激发作用。这一结论可以从几个方面获得证据:第一,小鼠骨髓细胞与人骨髓条件液保温六小时后,再测定其中 CFU-S 数,结果是增加了。第二,经亚致死剂量照射的小鼠,腹腔注射适量的人骨髓条件液,其内源性脾结节也明显增多。第三,采用阿糖胞苷自杀的方法,测定小鼠骨髓经与人骨髓条件液保温后,其中 CFU-S 的自杀率也有增高的趋势。上述几方面的实验,说明人骨髓长期培养中存在着某种活性物质,调节体外造血。至于这种物质的来源,以及在体外造血中所起的作用,还需要做很多工作,逐步予以澄清。  相似文献   

15.
Colony-stimulating factor (CSF), a protein required for the in vitro formation of colonies composed of granulocytes and/or macrophages, was isolated from the urine of anemic patients by using a seven-step procedure. The purified, homogeneous CSF had a specific activity of 1.9 X 10(8) U/absorbance unit at 280 nm (AU). This represents an overall purification of 25,330-fold and a total recovery of 3.8%. Upon iodination of the protein, the radioactivity migrated on sodium dodecyl sulfate (SDS) gel electrophoresis as a single peak with an apparent molecular weight of 46,000; reduction with mercaptoethanol caused dissociation to a single component of molecular weight 23,000. Only the dimer is active in stimulating colony formation. Urinary CSF stimulates formation of colonies comprising only macrophages in the mouse bone marrow cell culture assay. A neutralizing antibody raised against mouse L-cell CSF did not neutralize the activity of the urinary CSF but did bind it. This may indicate that the relative positions of antibody binding sites and the active sites are different in these two glycoproteins.  相似文献   

16.
Supernatants from mouse spleen cell cultures contain a factor which acts in a similar manner to erythropoietin (Ep) to stimulate the formation of 2-day erythroid (CFU-E) colonies in vitro from bone marrow or fetal liver cells. Analysis of conditioned media by high performance liquid chromatography (HPLC) on anion exchange, reverse phase, molecular size exclusion, and hydroxyapatite columns demonstrated that the erythropoietin-like activity (EpLA) has different biochemical characteristics to mouse Ep from anemic mouse serum. In addition, EpLA has a molecular weight (Mr), of 20,000 daltons determined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), compared to 42,000 for mouse Ep. Partially purified EpLA was found to be active in vivo as well as in vitro. Highly purified preparations of gamma-interferon, Multilineage hemopoietic growth factor (Multi HGF), Interleukin-2 (IL-2), IL-1, and colony stimulating factor 1 (CSF-1) did not support CFU-E colony formation. Thus, it was established that EpLA could not be attributed to other known components of spleen cell conditioned medium. Titration of mouse Ep and EpLA suggests that only a portion of the Ep-responsive CFU-E population in fetal liver is sensitive to EpLA.  相似文献   

17.
Formation of granulocytic and macrophage colonies in agar cultures of mouse marrow or spleen cells was stimulated by the addition of medium from pokeweed mitogen-stimulated cultures of mouse spleen cells (PKW-CM). Approximately 5% of the colonies developing were large, dispersed granulocytic colonies (DG-colonies) composed of cells with eosinophilic cytoplasmic granules. The capacity to stimulate DG-colonies was shown by media conditioned by PKW-treated lymphoid and peritoneal cells but not by other cells or organ fragments. Velocity sedimentation studies indicated that cells generating DG-colonies were separable from cells generating regular granulocytic or macrophage colonies. DG-colonies did not survive if transfered to cultures containing other forms of CSF. The active colony stimulating factor in pokeweed mitogen-conditioned medium which stimulates DG-colony formation was antigenically distinct from the factor stimulating granulocytic and macrophage colony formation, was separable electrophoretically from the latter factor and on gel filtration had an apparent molecular weight of 50,000. Although the cells in DG-colonies have not been established to be eosinophils, DG-colonies represent an interesting new system for analysing further aspects of the control of growth and differentiation in hemopoietic populations.  相似文献   

18.
CM-S is an autonomous cell line of human hemopoietic precursor cells inducible to monocyte-macrophage differentiation in response to appropriate inducing agents. CM-S cells produce factors that stimulate their own growth and proliferation, and are also capable of stimulating clonal proliferation of human, but not mouse, monocytic and granulocytic bone marrow progenitor cells in viscous medium. Preliminary purification steps have demonstrated at least two species, one of which (MW 30,000–50,000) retains both these activities, while the other (MW ≤ 10,000) apparently retains only the autostimulatory activity. CM-S cells could thus be a useful source for the purification of human colony stimulating factors (CSFs). CM-S cells also respond to factors present in human placenta conditioned medium, known to contain human CSF. This suggests that CM-S cells could provide a homogeneous target cell population for testing CSFs from other human sources.  相似文献   

19.
Serum-free conditioned medium prepared from an established line of human pancreatic carcinoma (MIA PaCa-2) provides a rich source of colony-stimulating factor (CSF). Two activities distinctly separable by isoelectrofocusing have been identified: a high molecular weight CSF exhibiting greater activity in mouse bone marrow and a low molecular weight CSF more active in human bone marrow. The high molecular weight CSF has been purified 1000-fold to apparent homogeneity by a two-step procedure including isoelectrofocusing and gel filtration chromatography. The purified CSF has a molecular weight of 50,000 and an isoelectric point of 3.7 to 4.6. It is a glycoprotein as shown by periodic acid-Schiff stain and exhibits greater activity in mouse marrow than in human marrow.  相似文献   

20.
Mouse C127I cells were transformed with a chimeric plasmid consisting of bovine papillomavirus DNA and human granulocyte-colony-stimulating factor (G-CSF) cDNA placed under the control of the SV40 early promoter. The transformed cells secreted constitutively a high level of human G-CSF, 10-20 micrograms/ml in a low-serum medium. The secreted G-CSF has been purified to homogeneity by a two-step procedure including gel filtration and hydrophobic column chromatography. The purified recombinant G-CSF runs as a single band with an apparent Mr of 19,000 on a polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. This value corresponds to that of the native human G-CSF purified from the medium conditioned by human carcinoma CHU-2 cells. The recombinant human G-CSF was as active as native G-CSF in vitro in supporting proliferation of mouse NFS-60 cells and stimulating colony formation from human as well as mouse bone marrow cells. When the recombinant human G-CSF was subcutaneously administrated into mice, a remarkable stimulation of granulopoiesis and splenomegaly was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号