首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stromal cells (MSC) possess immunosuppressive properties, yet when treated with IFN-gamma they acquire APC functions. To gain insight into MSC immune plasticity, we explored signaling pathways induced by IFN-gamma required for MHC class II (MHC II)-dependent Ag presentation. IFN-gamma-induced MHC II expression in mouse MSC was enhanced by high cell density or serum deprivation and suppressed by TGF-beta. This process was regulated by the activity of the type IV CIITA promoter independently of STAT1 activation and the induction of the IFN regulatory factor 1-dependent B7H1/PD-L1 encoding gene. The absence of direct correlation with the cell cycle suggested that cellular connectivity modulates IFN-gamma responsiveness for MHC II expression in mouse MSC. TGF-beta signaling in mouse MSC involved ALK5 and ALK1 TGF-beta RI, leading to the phosphorylation of Smad2/Smad3 and Smad1/Smad5/Smad8. An opposite effect was observed in human MSC where IFN-gamma-induced MHC II expression occurred at the highest levels in low-density cultures; however, TGF-beta reduced IFN-gamma-induced MHC II expression and its signaling was similar as in mouse MSC. This suggests that the IFN-gamma-induced APC features of MSC can be modulated by TGF-beta, serum factors, and cell density in vitro, although not in the same way in mouse and human MSC, via their convergent effects on CIITA expression.  相似文献   

2.
Background aims. Mesenchymal stromal cells (MSC) have now been shown to reside in numerous tissues throughout the body, including the pancreas. Ex vivo culture-expanded MSC derived from many tissues display important interactions with different types of immune cells in vitro and potentially play a significant role in tissue homeostasis in vivo. In this study, we investigated the biologic and immunomodulatory properties of human pancreatic islet-derived MSC. Methods. We culture-expanded MSC from cadaveric human pancreatic islets and characterized them using flow cytometry, differentiation assays and nuclear magnetic resonance-based metabolomics. We also investigated the immunologic properties of pancreatic islet-derived MSC compared with bone marrow (BM) MSC. Results. Pancreatic islet and BM-derived MSC expressed the same cell-surface markers by flow cytometry, and both could differentiate into bone, fat and cartilage. Metabolomics analysis of MSC from BM and pancreatic islets also showed a similar set of metabolic markers but quantitative polymerase chain reactions showed that pancreatic islet MSC expressed more interleukin(IL)-1b, IL-6, STAT3 and FGF9 compared with BM MSC, and less IL-10. However, similar to BM MSC, pancreatic islet MSC were able to suppress proliferation of allogeneic T lymphocytes stimulated with anti-CD3 and anti-CD28 antibodies. Conclusions. Our in vitro analysis shows pancreatic islet-derived MSC have phenotypic, biologic and immunomodulatory characteristics similar, but not identical, to BM-derived MSC. We propose that pancreatic islet-derived MSC could potentially play an important role in improving the outcome of pancreatic islet transplantation by promoting engraftment and creating a favorable immune environment for long-term survival of islet allografts.  相似文献   

3.
Human bone marrow mesenchymal stem cells (BM-MSC) are multipotent progenitor cells that have transient immunomodulatory properties on Natural Killer (NK) cells, Dendritic Cells (DC), and T cells. This study compared the use of MSC isolated from bone marrow and fetal liver (FL-MSC) to determine which displayed the most efficient immunosuppressive effects on T cell activation. Although both types of MSC exhibit similar phenotype profile, FL-MSC displays a much more extended in vitro life-span and immunomodulatory properties. When co-cultured with CD3/CD28-stimulated T cells, both BM-MSC and FL-MSC affected T cell proliferation by inhibiting their entry into the cell cycle, by inducing the down-regulation of phospho-retinoblastoma (pRb), cyclins A and D1, as well as up-regulating p27(kip1) expression. The T cell inhibition by MSC was not due to the soluble HLA-G5 isoform, but to the surface expression of HLA-G1, as shown by the need of cell-cell contact and by the use of neutralizing anti-HLA-G antibodies. To note, in a HLA-G-mediated fashion, MSC facilitated the expansion of a CD4(low)/CD8(low) T subset that had decreased secretion of IFN-γ, and an induced secretion of the immunomodulatory cytokine IL-10. Because of their longer lasting in vitro immunosuppressive properties, mainly mediated by HLA-G, and their more efficient induction of IL-10 production and T cell apoptosis, fetal liver MSC could be considered a new tool for MSC therapy to prevent allograft rejection.  相似文献   

4.
Expression of MHC class II by donor-derived APCs has been shown to be important for allograft rejection. It remains controversial, however, whether nonhemopoietic cells, such as vascular endothelium, possess Ag-presenting capacity to activate alloreactive CD4(+) T lymphocytes. This issue is important in transplantation, because, unlike hemopoietic APCs, allogeneic vascular endothelium remains present for the life of the organ. In this study we report that cytokine-activated vascular endothelial cells are poor APCs for allogeneic CD4(+) T lymphocytes in vitro and in vivo despite surface expression of MHC class II. Our in vitro observations were extended to an in vivo model of allograft rejection. We have separated the allostimulatory capacity of endothelium from that of hemopoietic APCs by using bone marrow chimeras. Hearts that express MHC class II on hemopoietic APCs are acutely rejected in a mean of 7 days regardless of the expression of MHC class II on graft endothelium. Alternatively, hearts that lack MHC class II on hemopoietic APCs are acutely rejected at a significantly delayed tempo regardless of the expression of MHC class II on graft endothelium. Our data suggest that vascular endothelium does not play an important role in CD4(+) direct allorecognition and thus does not contribute to the vigor of acute rejection.  相似文献   

5.
It is well known that it is difficult to induce an immunotolerance with allogeneic skin transplantation. We attempted to find the immunosuppressive protocol for prolonging skin allograft rejection by using interleukin-16 because IL-16 is considered one of the natural ligands to CD4 molecules. First we examined whether synergistic immunosuppressive effects of recombinant IL-16 plus anti-CD4 mAbs are induced in mixed lymphocyte reaction (MLR). Next we used IL-16-cDNA-transfected OSC-20 (human oral squamous cell carcinoma cell line) as an in vitro model of the epidermal keratinocyte equivalent and examined whether this transfectant could inhibit the activation of allogeneic T cells. Our data indicated that IL-16 clearly inhibited human MLR and that IL-16 increased synergistically the immunosuppressive effect of anti-CD4 mAb. We also used IL-16 transfectant and this produced more than 50 ng/ml of IL-16 in the supernatant by which human MLR was significantly inhibited. Furthermore, this transfectant also inhibited the activation of allogeneic lymphocytes stimulated directly with transfectant cells. These results indicated that the IL-16-producing allogeneic skin graft might have a local immunosuppressive action that would prolong graft survival.  相似文献   

6.
目的:探讨应用山萘酚增强Treg细胞免疫抑制功能,从而抑制大鼠移植物排斥反应并改善移植物生存的作用和机制。方法:以Wister大鼠和SD大鼠分别为供、受体,建立同种异体皮肤移植排斥反应动物模型。观察受体老鼠皮肤移植物的情况,记录移植物失功时间(移植物皮片80%面积发生排斥)。RT-PCR检测移植7天后脾细胞、淋巴细胞FOXP3、CTLA-4和IL-10的mRNA水平,用HE染色组织病理学观察术后7天移植皮片的淋巴细胞浸润程度。体外实验T细胞增殖抑制试验加入山萘酚作为对照,观察Treg功能情况。结果:1.山萘酚能增强移植后同种异体移植物的生存时间(DMSO组6.3±0.3天,山萘酚组13.7±0.39天,P<0.01);2.RT-PCR显示山萘酚可增强细胞CTLA-4(对照组9.24±0.17,山萘酚组12.48±0.145,P<0.05)、FOXP3(对照组0.96±0.07,山萘酚组1.41±0.07,P<0.01)和IL-10(对照组0.95±0.12,山萘酚组1.50±0.16,P<0.05)的mRNA水平;3.体外T细胞增殖抑制实验中,山萘酚可增强Treg细胞的免疫抑制功能。结论:在大鼠皮肤移植模型中,山萘酚可延长皮肤移植物的生存时间,提高Treg细胞相关IL-10、FOXP3和CTLA-4的mRNA水平;体外实验中,能抑制效应T细胞的增殖,表明山萘酚在提高移植物生存方面存在一定的价值。  相似文献   

7.
We have investigated the interaction between murine T lymphocytes and allogeneic APC in an in vitro proliferative mixed leukocyte reaction. Our results demonstrate that freshly isolated potentially alloreactive murine splenic T lymphocytes, in primary culture, can be induced to develop a state of allospecific proliferative hyporesponsiveness in vitro by exposure to 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide-modified allogeneic APC, a method similar to that previously used to induce nonresponsiveness in murine Ag-specific self-MHC-restricted T lymphocyte clones. This hyporesponsiveness was: specific for the allohaplotype of inducing APC, maintained for 96 h in vitro, not due to cellular inhibitory mechanisms, and associated with reduced ability to secrete IL-2 but not IL-3. Induction of this hyporesponsiveness was not due to altered expression of class II MHC gene products on the APC but was associated with markedly reduced T lymphocyte-APC adhesive interactions despite the lack of a detectable immunophenotypic change in lymphocyte function-associated Ag 1 (LFA-1) and intercellular adhesion molecule 1 (ICAM-1) expression on the modified APC. Therefore, we propose that TCR occupancy in the absence of normal T lymphocyte-APC adhesive clustering may induce T lymphocyte tolerance.  相似文献   

8.
Inhibition of graft-versus-host disease by double-negative regulatory T cells   总被引:12,自引:0,他引:12  
Pretransplant infusion of lymphocytes that express a single allogeneic MHC class I Ag has been shown to induce tolerance to skin and heart allografts that express the same alloantigens. In this study, we demonstrate that reconstitution of immunoincompetent mice with spleen cells from MHC class I L(d)-mismatched donors does not cause graft-vs-host disease (GVHD). Recipient mice become tolerant to skin allografts of lymphocyte donor origin while retaining immunity to third-party alloantigens. The mechanism involves donor-derived CD3(+)CD4(-)CD8(-) double-negative T regulatory (DN Treg) cells, which greatly increase and form the majority of T lymphocytes in the spleen of recipient mice. DN Treg cells isolated from tolerant recipient mice can suppress the proliferation of syngeneic antihost CD8(+) T cells in vitro. Furthermore, we demonstrate that DN Treg cells can be generated in vitro by stimulating them with MHC class I L(d)-mismatched lymphocytes. These in vitro generated L(d)-specific DN Treg cells are able to down-regulate the activity of antihost CD8(+) T cells in vitro by directly killing activated CD8(+) T cells. Moreover, infusing in vitro generated L(d)-mismatched DN Treg cells prevented the development of GVHD caused by allogeneic CD8(+) T cells. Together these data demonstrate that infusion of single MHC class I locus-mismatched lymphocytes may induce donor-specific transplantation tolerance through activation of DN Treg cells, which can suppress antihost CD8(+) T cells and prevent the development of GVHD. This finding indicates that using single class I locus-mismatched grafts may be a viable alternative to using fully matched grafts in bone marrow transplantation.  相似文献   

9.
We have studied the immunomodulatory properties of epithelial cells from the small intestine on T cell immune function in vitro. Proliferation of lymph node cells stimulated either with antigen or with mitogen was inhibited by epithelial cells in a dose-dependent fashion. The epithelial cell-mediated suppression of lymphocyte proliferation was blocked by indomethacin, a cyclooxygenase pathway inhibitor, demonstrating that the suppressive effect of epithelial cells was related to prostaglandin secretion. Furthermore, the action of epithelial cell-secreted prostaglandin on lymphocytes was related to its effect on IL-2 as the suppressive effect of epithelial cells was abrogated by the addition of exogenous IL-2. As previously reported, epithelial cells constitutively express MHC class II and we found them able to present antigen in a class II-restricted fashion when their suppressive effects were blocked by indomethacin. Furthermore, epithelial cells activated by LPS secrete an IL-1 like molecule in a fashion analogous to other antigen-presenting cells. These results demonstrate that epithelial cells can both enhance and suppress in vitro T cell immune responses and further characterize the mechanisms by which intestinal epithelial cells may function in gut-associated immune responses.  相似文献   

10.
Background aimsMesenchymal stromal cells (MSCs) have been extensively studied as a cellular therapeutic for various pathologic conditions. However, there remains a paucity of data regarding regional and systemic safety of MSC transplantations, particularly with multiple deliveries of allogeneic cells. The purpose of this study was to investigate the safety and systemic immunomodulatory effects of repeated local delivery of allogeneic MSCs into the region of the lacrimal gland, the gland of the third eyelid and the knee joint in dogs.MethodsAllogeneic adipose tissue-derived canine MSCs were delivered to the regions of the lacrimal gland and the third eyelid gland as well as in the knee joints of six healthy laboratory beagles as follows: six times with 1-week intervals for delivery to the lacrimal gland and the third eyelid gland regions and three to four times with 1- to 2-week intervals for intra-articular transplantations. Dogs were sequentially evaluated by clinical examination. At the conclusion of the study, dogs were humanely euthanized, and a complete gross and histopathologic examination of all organ systems was performed. Mixed leukocyte reactions were also performed before the first transplantation and after the final transplantation.ResultsClinical and pathologic examinations found no severe consequences after repeated MSC transplantations. Results of mixed leukocyte reactions demonstrated suppression of T-cell proliferation after MSC transplantations.ConclusionsThis is the first study to demonstrate regional and systemic safety and systemic immunomodulatory effects of repeated local delivery of allogeneic MSCs in vivo.  相似文献   

11.
Subcutaneous implantation of polyvinyl sponges represents a suitable model for studying the mechanisms of acute and chronic inflammation, granulomatous foreign-body reaction, as well as wound healing. Using such a model in rats, we studied the phenotypic and functional characteristics of dendritic cells (DC). DC were purified from the sponge exudate using a combination of separation gradients, adherence to plastics, and immunomagnetic sorting. We have shown that the number of DC progressively increased in the sponges, reaching maximal values at day 10 after implantation, followed by their decrease thereafter. Inflammatory DC expressed MHC class II molecules and myeloid markers CD11b, CD11c, and CD68. A subset of DC expressed CD4, R-MC46, DEC-205, R-MC17, and CCR1. Compared to DC isolated in the early phase of inflammation (day 6 DC), DC in the late stage of inflammation (day 14 DC) had a lower capability to stimulate the proliferation of allogeneic lymphocytes and CD4(+) T cells. This finding correlated with the downregulation of CD80, CD86, and CD54 expression and the increased proportion of plasmacytoid MHC class II(+) His 24(+) His 48(+) DC. The suppression of allogeneic lymphocyte proliferation was abrogated by the treatment of DC with lipopolysaccharide. In addition, day 14 DC exerted tolerogenic capability in co-culture with allogenic CD4(+) T cells. These results correlated with the increased levels of IL-10 and TGF-beta in culture supernatants and the sponge exudate.  相似文献   

12.
To determine the relative ability of allogeneic endothelial cells to stimulate helper T lymphocytes (HTL), human PBMC or purified T cells were incubated in conventional lymphocyte microcultures or in limiting dilution microcultures with allogeneic human umbilical vein endothelia (HUVE), with cytokine-treated allogeneic HUVE, or with allogeneic peripheral blood monocytes. These cultures were tested for IL-2 production as an index of HTL stimulation. Dose-response studies in conventional lymphocyte cultures indicated that allogeneic monocytes were better than allogeneic HUVE at stimulating IL-2 production. Limiting dilution analyses revealed that untreated HUVE and TNF-treated HUVE stimulated small numbers of HTL (approximately 1 HTL/30,000 PBMC), whereas 5 to 10 times more HTL were stimulated by IFN-gamma-treated HUVE and 10 to 20 times more HTL were stimulated by allogeneic monocytes. Serologic deletion studies revealed that most of the high frequency HTL responding to IFN-gamma-treated HUVE were CD4+, whereas most of the low frequency HTL responding to nontreated HUVE or to TNF-treated HUVE were CD8+. Interestingly, mAb to MHC class I and class II molecules, which significantly impaired HUVE-induced proliferation, caused little interference with HUVE-induced IL-2 production. Finally, polymerase chain reaction analysis demonstrated that untreated allogeneic HUVE cells could stimulate PBMC to produce mRNA for IFN-gamma, as well as for IL-2. These data demonstrate the following hierarchy of allogeneic stimulatory capacity for human HTL: monocytes greater than IFN-gamma-treated HUVE much greater than TNF-treated HUVE = nontreated HUVE. Further, these data suggest that non-activated allogeneic endothelial cells can initiate immune responses by inducing IL-2 and IFN-gamma. Because IFN-gamma can induce MHC class II expression by the endothelial cells, this could recruit large numbers of CD4+ T cells for IL-2 production.  相似文献   

13.
Transplantation of human neural stem cells (NSCs) and their derivatives is a promising future treatment for neurodegenerative disease and traumatic nervous system lesions. An important issue is what kind of immunological reaction the cellular transplant and host interaction will result in. Previously, we reported that human NSCs, despite expressing MHC class I and class II molecules, do not trigger an allogeneic T cell response. Here, the immunocompetence of human NSCs, as well as differentiated neural cells, was further studied. Astrocytes expressed both MHC class I and class II molecules to a degree equivalent to that of the NSCs, whereas neurons expressed only MHC class I molecules. Neither the NSCs nor the differentiated cells triggered an allogeneic lymphocyte response. Instead, these potential donor NSCs and astrocytes, but not the neurons, exhibited a suppressive effect on an allogeneic immune response. The suppressive effect mediated by NSCs most likely involves cell–cell interaction. When the immunogenicity of human NSCs was tested in an acute spinal cord injury model in rodent, a xenogeneic rejection response was triggered. Thus, human NSCs and their derived astrocytes do not initiate, but instead suppress, an allogeneic response, while they cannot block a graft rejection in a xenogeneic setting.  相似文献   

14.
In previous studies, the murine SaI (A/J derived, KkDd) sarcoma was transfected with the allogeneic MHC class I H-2Kb gene, and expressed high levels of H-2Kb antigen. Contrary to expectations, the tumor cells expressing the alloantigen (SKB3.1M tumor cells) were not rejected by autologous A/J mice. Because these results contradict the laws of transplantation immunology, the present studies were undertaken to examine the immunogenicity of SKB3.1M and SaI cells in allogeneic hosts. Similar to SKB3.1M, SaI cells are lethal in some allogeneic strains, despite tumor-host MHC class I incompatibilities. Tumor challenges of SKB3.1M and SaI cells, however induce MHC class I-specific antibodies and CTL in both tumor-resistant and -susceptible hosts. Although the tumors induce specific CTL, tumor cells are not lysed in vitro by these CTL, suggesting that the tumor cells are resistant to CTL-mediated lysis. Since growth of these tumors does not follow the classical rules of allograft transplantation, and because the tumor is not susceptible to CTL-mediated lysis, we have used Winn assays to identify the effector lymphocyte(s) responsible for SaI rejection. Depletion studies demonstrate that the effector cell is a CD4-CD8+ T lymphocyte. Collectively these studies suggest that the host's response to MHC class I alloantigens of SKB3.1M and SaI cells does not determine tumor rejection, and that effector cells other than classically defined CTL, but with the CD4-CD8+ phenotype, can mediate tumor-specific immunity.  相似文献   

15.
16.
BACKGROUND AIMS. The use of allogeneic mesenchymal stem cells (MSC) to treat acute equine lesions would greatly expand equine cellular therapy options; however, the safety and antigenicity of these cells have not been well-studied. We hypothesized that equine allogeneic umbilical cord tissue (UCT)-derived MSC would not elicit acute graft rejection or a delayed-type hypersensitivity response when injected intradermally. METHODS. Six Quarterhorse yearlings received 12 intradermal injections (autologous MSC, allogeneic MSC, positive control and negative control, in triplicate) followed by the same series of 12 injections, 3-4 weeks later, at another site. Wheals were measured and palpated at 0.25, 4, 24, 48, 72 h and 7 days post-injection. Biopsies were obtained at 48 and 72 h and 7 days post-injection. Mixed leukocyte reactions were performed 1 week prior to the first injections and 3 weeks after the second injections. RESULTS. There were no adverse local or systemic responses to two intradermal injections of allogeneic MSC. MSC injection resulted in minor wheal formation, characterized by mild dermatitis, dermal edema and endothelial hyperplasia, that fully resolved by 48-72 h. No differences were noted between allogeneic and autologous MSC. The second injection of MSC did not elicit more significant physical or histomorphologic alterations compared with the first MSC injection. Neither allogeneic nor autologous UCT-derived MSC stimulated or suppressed baseline T-cell proliferation in vitro prior to or after two MSC administrations. CONCLUSIONS. Equine allogeneic UCT MSC may be safely administered intradermally on multiple occasions without eliciting a measurable cellular immune response.  相似文献   

17.
Several reports have suggested that mesenchymal stem cells (MSCs) could exert a potent immunosuppressive effect in vitro, and thus may have a therapeutic potential for T cell-dependent pathologies. We aimed to establish whether MSCs could be used to control graft-vs-host disease (GVHD), a major cause of morbidity and mortality after allogeneic hemopoietic stem cell transplantation. From C57BL/6 and BALB/c mouse bone marrow cells, we purified and expanded MSCs characterized by the lack of expression of CD45 and CD11b molecules, their typical spindle-shaped morphology, together with their ability to differentiate into osteogenic, chondrogenic, and adipogenic cells. These MSCs suppressed alloantigen-induced T cell proliferation in vitro in a dose-dependent manner, independently of their MHC haplotype. However, when MSCs were added to a bone marrow transplant at a MSCs:T cells ratio that provided a strong inhibition of the allogeneic responses in vitro, they yielded no clinical benefit on the incidence or severity of GVHD. The absence of clinical effect was not due to MSC rejection because they still could be detected in grafted animals, but rather to an absence of suppressive effect on donor T cell division in vivo. Thus, in these murine models, experimental data do not support a significant immunosuppressive effect of MSCs in vivo for the treatment of GVHD.  相似文献   

18.
Background aimsMesenchymal stromal cells (MSC) have been shown to possess immunomodulatory functions and proposed as a tool for managing or preventing graft-versus-host disease (GvHD) as well as promoting clinical transplantation tolerance. We investigated the capacity of human bone marrow (BM) MSC to modulate the proliferation of T cells obtained from peripheral blood (PB) and umbilical cord blood (CB). We addressed the importance of the MSC:T-cell ratio, requirement for cell contact and impact of soluble factors on the MSC-mediated effects. We also analyzed whether regulatory T cells could be modulated by MSC in co-cultures.MethodsThe effect of different MSC concentrations on T-cell proliferation induced by allogeneic, mitogenic or CD3/CD28 stimulation was analyzed using bromodeoxyuridine (BrdU) incorporation and carboxyfluorescein diacetate–succinimidyl ester (CFDA-SE) labeling. The level of regulatory T cells was assessed using quantitative real-time polymerase chain reaction (PCR) and flow cytometry analysis.ResultsMSC induced a dose- and contact-dependent inhibition of T-cell proliferation but lymphocytes from CB and PB were differentially affected. At low concentrations, MSC supported both CB and PB T-cell proliferation, rather than inhibiting their proliferation. This supportive effect was contact independent and soluble factors such interleukin-6 (IL-6) appeared to be involved. Interestingly, among the expanded T-cell population in both CB and PB, regulatory T cells were increased and were a part of the new cells promoted by MSC at low doses.ConclusionsMSC represent an attractive tool for reducing the lymphocyte response by inhibiting T-cell activation and proliferation as well as promoting tolerance by maintaining and promoting the expansion of regulatory cells. Nevertheless, the dual ability of MSC to either sustain or suppress T-cell proliferation according to conditions should be considered in the context of clinical applications.  相似文献   

19.
Since 2004, when a case report describing the use of human mesenchymal stem cells (hMSCs) infusion as a therapy for GVHD after bone marrow transplantation, a new perspective in MSC function emerged. Since then hMSCs immunomodulatory potential became the target of several studies. Although great progress has been made in our understanding of hMSCs, their effect on T cell remains obscure. Our study has confirmed the already described effect of hMSCs on lymphocytes proliferation and survival. We also show that the impairment of lymphocyte proliferation and apoptosis is contact-independent and occurs in a prostaglandin-independent manner. A potential correlation between IL-7 and hMSCs effect is suggested, as we observed an increase in IL-7 receptors (CD127) on lymphocyte membrane in MSC presence. Additionally, blocking IL-7 in hMSCs-lymphocytes co-cultures increased lymphocytes apoptosis and we also have demonstrated that hMSCs are able to produce this interleukin. Moreover, we found that during Th1/Th17 differentiation in vitro, hMSCs presence leads to Th1/Th17 cells with reduced capacity of INF-y and IL-17 secretion respectively, regardless of having several pro-inflammatory cytokines in culture. We did not confirm an increment of Treg in these cultures, but a reduced percentage of INF-y/IL-17 secreting cells was observed, suggesting that the ratio between anti and pro-inflammatory cells changed. This changed ratio is very important to GvHD therapy and links hMSCs to an anti-inflammatory role. Taken together, our findings provide important preliminary results on the lymphocyte pathway modulated by MSCs and may contribute for developing novel treatments and therapeutic targets for GvHD and others autoimmune diseases.  相似文献   

20.
Allergen-specific immunotherapy using peptides is an efficient treatment for allergic diseases. Recent studies suggest that the induction of CD4+ regulatory T (Treg) cells might be associated with the suppression of allergic responses in patients after allergen-specific immunotherapy. Our aim was to identify MHC class II promiscuous T cell epitopes for the birch pollen allergen Bet v 1 capable of stimulating Treg cells with the purpose of inhibiting allergic responses. Ag-reactive CD4+ T cell clones were generated from patients with birch pollen allergy and healthy volunteers by in vitro vaccination of PBMC using Bet v 1 synthetic peptides. Several CD4+ T cell clones were induced by using 2 synthetic peptides (Bet v 1(141-156) and Bet v 1(51-68)). Peptide-reactive CD4+ T cells recognized recombinant Bet v 1 protein, indicating that these peptides are produced by the MHC class II Ag processing pathway. Peptide Bet v 1(141-156) appears to be a highly MHC promiscuous epitope since T cell responses restricted by numerous MHC class II molecules (DR4, DR9, DR11, DR15, and DR53) were observed. Two of these clones functioned as typical Treg cells (expressed CD25, GITR, and Foxp3 and suppressed the proliferation and IL-2 secretion of other CD4+ T cells). Notably, the suppressive activity of these Treg cells required cell-cell contact and was not mediated through soluble IL-10 or TGF-beta. The identified promiscuous MHC class II epitope capable of inducing suppressive Treg responses may have important implication for the development of peptide-based Ag-specific immunotherapy to birch pollen allergy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号