首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrodynamic shear creates mechanical stresses on selectin bonds, modulating affinity and kinetic parameters. Chemical modification of sialyl Lewis(x) increases the strength of L-selectin bonds without altering recognition, suggesting that mechanical and biorecognition characteristics are separable. L-selectin bond formation rates may be strongly influenced by sulfate orientation in sulfo sialyl Lewis(x).  相似文献   

2.
The leukocyte adhesion molecule L-selectin mediates lymphocyte homing to secondary lymphoid organs and to certain sites of inflammation. The cognate ligands for L-selectin possess the unusual sulfated tetrasaccharide epitope 6-sulfo sialyl Lewis x (Siaalpha2-->3Galbeta1-->4[Fucalpha1-->3][SO(3)-->6]GlcNAc). Sulfation of GlcNAc within sialyl Lewis x is a crucial modification for L-selectin binding, and thus, the underlying sulfotransferase may be a key modulator of lymphocyte trafficking. Four recently discovered GlcNAc-6-sulfotransferases are the first candidate contributors to the biosynthesis of 6-sulfo sLex in the context of L-selectin ligands. Here we report the in vitro activity of the four GlcNAc-6-sulfotransferases on a panel of synthetic oligosaccharide substrates that comprise structural motifs derived from sialyl Lewis x. Each enzyme preferred a terminal GlcNAc residue, and was impeded by the addition of a beta1,4-linked Gal residue (i.e., terminal LacNAc). Surprisingly, for three of the enzymes, significant activity was observed with sialylated LacNAc, and two of the enzymes were capable of detectable sulfation of GlcNAc in the context of sialyl Lewis x. On the basis of these results, we propose possible pathways for 6-sulfo sialyl Lewis x biosynthesis and suggest that sulfation may be an early committed step.  相似文献   

3.
The selectins (lectin-EGF-complement binding-cell adhesion molecules [LEC-CAMs]) are a family of mammalian receptors implicated in the initial interactions between leukocytes and vascular endothelia, leading to lymphocyte homing, platelet binding, and neutrophil extravasation. The three known selectins, L-selectin (leukocyte adhesion molecule-1 [LECAM-1]), E-selectin (endothelial-leukocyte adhesion molecule-1 [ELAM-1]), and P-selectin (GMP-140) share structural features that include a calcium-dependent lectin domain. The sialyl Lewis(x) carbohydrate epitope has been reported as a ligand for both E- and P-selectins. Although L-selectin has been demonstrated to bind to carbohydrates, structural features of potential mammalian carbohydrate ligand(s) have not been well defined. Using an ELISA developed with a sialyl Lewis(x)-containing glycolipid and an E-selectin-IgG chimera, we have demonstrated the direct binding of the L-selectin-IgG chimera to sialyl Lewis(x). This recognition was calcium dependent, and could be blocked by Mel-14 antibody but not by other antibodies. Recognition was confirmed by the ability of cells expressing the native L-selectin to adhere to immobilized sialyl Lewis(x). These data suggest that the sialyl Lewis(x) oligosaccharide may form the basis of a recognition domain common to all three selectins.  相似文献   

4.
5.
Here we accurately recreate the mechanical shedding of L-selectin and its effect on the rolling behavior of neutrophils in vitro using the adhesive dynamics simulation by incorporating the shear-dependent shedding of L-selectin. We have previously shown that constitutively expressed L-selectin is cleaved from the neutrophil surface during rolling on a sialyl Lewis x-coated planar surface at physiological shear rates without the addition of exogenous stimuli. Utilizing a Bell-like model to describe a shedding rate which presumably increases exponentially with force, we were able to reconstruct the characteristics of L-selectin-mediated neutrophil rolling observed in the experiments. First, the rolling velocity was found to increase during rolling due to the mechanical shedding of L-selectin. When most of the L-selectin concentrated on the tips of deformable microvilli was cleaved by force exerted on the L-selectin bonds, the cell detached from the reactive plane to join the free stream as observed in the experiments. In summary, we show through detailed computational modeling that the force-dependent shedding of L-selectin can explain the rolling behavior of neutrophils mediated by L-selectin in vitro.  相似文献   

6.
Lymphocyte homing is mediated by binding of L-selectin on lymphocytes with L-selectin ligands present on high-endothelial venules (HEV) of peripheral and mesenteric lymph nodes. L-selectin ligands are specific O-linked carbohydrates, 6-sulfo sialyl Lewis X, composed of sialylated, fucosylated, and sulfated glycans. Abrogation of fucosyltransferase-VII (FucT-VII) results in almost complete loss of lymphocyte homing, but structural analysis of carbohydrates has not been carried out on FucT-VII null mice. To determine whether functional losses seen in FucT-VII null mice are caused by structural changes in carbohydrates, we elucidated the carbohydrate structure of GlyCAM-1, a major L-selectin counter-receptor. Our results show that most alpha1,3-fucosylated structures in 6-sulfo sialyl Lewis X are absent and 6-sulfo N-acetyllactosamine is increased in the mutant mice. Surprisingly, the amount of 6'-sulfated galactose (Gal) that bound to Sumbucus nigra agglutinin column was also increased. We found that structures of those oligosaccharides containing 6'-sulfated Gal are almost identical to those synthesized by keratan sulfate sulfotransferase (KSST). We then showed that overexpression of KSST suppresses the expression of sialyl Lewis X on Chinese hamster ovary (CHO) cells engineered to express sialyl Lewis X. Moreover, KSST expression in those cells suppressed lymphocyte rolling compared with mock-transfected CHO cells expressing 6-sulfo sialyl Lewis X. 6'-Sulfo sialyl Lewis X can neither be found in GlyCAM-1 from CHO cells expressing both KSST and FucT-VII nor be found in GlyCAM-1 from HEV of mice. These results combined together suggest that KSST competes with FucT-VII for the same acceptor substrate and downregulates the synthesis of L-selectin ligand by inhibiting alpha1,3-fucosylation.  相似文献   

7.
Tensile mechanical force was long assumed to increase the detachment rates of biological adhesive bonds (Bell, 1978). However, in the last few years, several receptor-ligand pairs were shown to form "catch bonds," whose lifetimes are enhanced by moderate amounts of force. These include the bacterial adhesive protein FimH binding to its ligand mannose (Thomas et al., 2002; Thomas et al., 2006), blood cell adhesion proteins P- and L-selectin binding to sialyl Lewis X (sLe(X))-containing ligands (Marshall et al., 2003; Evans et al., 2004; Sarangapani et al., 2004), and the myosin-actin motor protein interaction (Guo and Guilford, 2006). The structural mechanism behind this counterintuitive force-enhanced catch bond behavior is of great interest.  相似文献   

8.
Sialyl Lewis(x)/E-selectin-mediated rolling in a cell-free system.   总被引:5,自引:2,他引:3       下载免费PDF全文
Selections mediate transient adhesion of neutrophils to stimulated endothelial cells at sites of inflammation by binding counter-receptors that present carbohydrates such as sialyl Lewis(x). We have developed a cell-free adhesion assay using sialyl Lewis(x)-coated microspheres and E-selection-IgG chimera-coated substrates to investigate the premise that rolling primarily results from functional properties of selection-carbohydrate bonds, whereas cellular morphology and signaling act as secondary effects. Sialyl Lewis(x)-coated microspheres attach to and roll over E-selectin-IgG chimera-coated substrates between the physiological wall shear stresses of 0.7 and 2 dynes/cm2. Rolling velocities vary with time and depend on E-selectin-IgG chimera site density and wall shear stress. Our results show that sialyl Lewis(x) is a minimal functional recognition element required for rolling on E-selectin under flow.  相似文献   

9.
Li YF  Kawashima H  Watanabe N  Miyasaka M 《FEBS letters》1999,444(2-3):201-205
Ligands for the leukocyte adhesion molecule L-selectin are expressed not only in lymph node high endothelial venules (HEV) but also in the renal distal tubuli. Here we report that L-selectin-reactive molecules in the kidney are chondroitin sulfate and heparan sulfate proteoglycans of 500-1000 kDa, unlike those in HEV bearing sialyl Lewis X-like carbohydrates. Binding of L-selectin to these molecules was mediated by the lectin domain of L-selectin and required divalent cations. Binding was inhibited by chondroitinase and/or heparitinase but not sialidase. Thus, L-selectin can recognize chondroitin sulfate and heparan sulfate glycosaminoglycans structurally distinct from sialyl Lewis X-like carbohydrates.  相似文献   

10.
Kidney transplant rejection is an inflammatory process characterizedby lymphocyte infiltration. Our earlier observations have shownthat peritubular capillary endothelium (PTCE) is the site oflymphocyte entry into the rejecting renal allograft. Duringrejection, PTCE begins to express sialyl Lewis x de novo, andbinds lymphocytes by a mechanism largely dependent on L-selectin.Hence, inhibiting the lymphocyte-endothelial interaction witholigosaccharide ligands of L-selectin offers an attractive possibilityto prevent the inflammation and rejection. Here, we report enzyme-assistedsynthesis of N-acetyllactosamine-based tetra-, deca-, and docosamericsaccharides carrying one, two or four distally located sialylLewis x groups [Neu-NAc  相似文献   

11.
The interaction of L-selectin expressed on leukocytes with endothelial cells leads to capture and rolling and is critical for the recruitment of leukocytes into sites of inflammation. It is known that leukocyte activation by chemoattractants, the change of osmotic pressure in cell media, or cross-linking of L-selectin all result in rapid shedding of L-selectin. Here we present a novel mechanism for surface cleavage of L-selectin on neutrophils during rolling on a sialyl Lewis x-coated surface that involves mechanical force. Flow cytometry and rolling of neutrophils labeled with Qdot(R)-L-selectin antibodies in an in vitro flow chamber showed that the mechanical shedding of L-selectin occurs during rolling and depends on the amount of shear applied. In addition, the mechanical L-selectin shedding causes an increase in cell rolling velocity with rolling duration, suggesting a gradual loss of L-selectin and is mediated by p38 mitogen-activated protein kinase activation. Thus, these data show that mechanical force induces the cleavage of L-selectin from the neutrophil surface during rolling and therefore decreases the adhesion of cells to a ligand-presenting surface in flow.  相似文献   

12.
Two adhesive events critical to efficient recruitment of neutrophils at vascular sites of inflammation are up-regulation of endothelial selectins that bind sialyl Lewis(x) ligands and activation of beta(2)-integrins that support neutrophil arrest by binding ICAM-1. We have previously reported that neutrophils rolling on E-selectin are sufficient for signaling cell arrest through beta(2)-integrin binding of ICAM-1 in a process dependent upon ligation of L-selectin and P-selectin glycoprotein ligand 1 (PSGL-1). Unresolved are the spatial and temporal events that occur as E-selectin binds to human neutrophils and dynamically signals the transition from neutrophil rolling to arrest. Here we show that binding of E-selectin to sialyl Lewis(x) on L-selectin and PSGL-1 drives their colocalization into membrane caps at the trailing edge of neutrophils rolling on HUVECs and on an L-cell monolayer coexpressing E-selectin and ICAM-1. Likewise, binding of recombinant E-selectin to PMNs in suspension also elicited coclustering of L-selectin and PSGL-1 that was signaled via mitogen-activated protein kinase. Binding of recombinant E-selectin signaled activation of beta(2)-integrin to high-avidity clusters and elicited efficient neutrophil capture of beta(2)-integrin ligands in shear flow. Inhibition of p38 and p42/44 mitogen-activated protein kinase blocked the cocapping of L-selectin and PSGL-1 and the subsequent clustering of high-affinity beta(2)-integrin. Taken together, the data suggest that E-selectin is unique among selectins in its capacity for clustering sialylated ligands and transducing signals leading to neutrophil arrest in shear flow.  相似文献   

13.
Synthetic carbohydrate and glycoprotein mimics displaying sulfated saccharide residues have been assayed for their L-selectin inhibitory properties under static and flow conditions. Polymers displaying the L-selectin recognition epitopes 3',6-disulfo Lewis x(Glc) (3-O-SO3-Galbeta1alpha4(Fucalpha1alpha3)-6-O-SO3-Glcbeta+ ++-OR) and 3',6'-disulfo Lewis x(Glc) (3, 6-di-O-SO3-Galbeta1alpha4(Fucalpha1alpha3)Glcbeta-OR) both inhibit L-selectin binding to heparin under static, cell-free binding conditions with similar efficacies. Under conditions of shear flow, however, only the polymer displaying 3',6-disulfo Lewis x(Glc) inhibits the rolling of L-selectin-transfected cells on the glycoprotein ligand GlyCAM-1. Although it has been shown to more effective than sialyl Lewis x at blocking the L-selectin-GlyCAM-1 interaction in static binding studies, the corresponding monomer had no effect in the dynamic assay. These data indicate that multivalent ligands are far more effective inhibitors of L-selectin-mediated rolling than their monovalent counterparts and that the inhibitory activities are dependent on the specific sulfation pattern of the recognition epitope. Importantly, our results indicate the L-selectin specificity for one ligand over another found in static, cell-free binding assays is not necessarily retained under the conditions of shear flow. The results suggest that monovalent or polyvalent carbohydrate or glycoprotein mimetics that inhibit selectin binding in static assays may not block the more physiologically relevant process of selectin-mediated rolling.  相似文献   

14.
Recently we identified sialyl 6-sulfo Le(x) as a major L-selectin ligand on high endothelial venules of human peripheral lymph nodes. In this study we investigated the ligand activity of sialyl 6-sulfo Le(x) to E- and P-selectins and compared it with the binding activity of conventional sialyl Le(x), by using cultured human lymphoid cells expressing both carbohydrate determinants. The results of the recombinant selectin binding studies and the nonstatic monolayer cell adhesion assays indicated that both sialyl 6-sulfo Le(x) and conventional sialyl Le(x) served as ligand for E- and P-selectins, while L-selectin was quite specific to sialyl 6-sulfo Le(x). Anti-PSGL-1 antibodies as well as O-sialoglycoprotein endopeptidase treatment almost completely abrogated the binding of P-selectin but barely affected the binding of E-selectin, indicating that these carbohydrate determinants carried by O-glycans of PSGL-1 selectively serves as a ligand for P-selectin, while the ligand for E-selectin is not restricted to PSGL-1 nor to O-sialoglycoprotein endopeptidase-sensitive glycans. The binding of L-selectin was markedly reduced by O-sialoglycoprotein endopeptidase treatment but only minimally affected by anti-PSGL-1 antibodies, indicating that O-glycans carrying sialyl 6-sulfo Le(x) were the major L-selectin ligands, while PSGL-1 was only a minor core protein for L-selectin in these cells. These results indicated that each member of the selectin family has a distinct ligand binding specificity.  相似文献   

15.
Selectins mediate tethering and rolling of leukocytes along the endothelium in a shear force-dependent manner. This key step in the cellular immune response is a target for experimental anti-inflammatory therapies. In the present paper we have examined the inhibitory activity of the minimal selectin ligand sialyl Lewis x (SiaLe(x)), its isomer sialyl Lewis a (SiaLe(a)) and sulfated tyrosine (sTyr) residues under dynamic flow reflecting the rheological conditions in the blood stream. The monomeric ligands were compared to multivalent polyacrylamide (PAA)-based conjugates under defined flow conditions on the molecular level, using surface plasmon resonance (SPR) technology, and on the cellular level, using a parallel-plate flow chamber. SPR measurements showed that a spatial arrangement of binding epitopes mimicking the selectin binding motif of the natural ligand PSGL-1 inhibits L-selectin binding successfully with IC(50) values in the nanomolar range. Using a flow chamber adhesion assay it could be shown that the multivalent inhibitors efficiently blocked rolling and tethering of NALM-6 pre-B cells transfected with human L-selectin to activated endothelium and that the inhibitory activity increased with rising shear stress. While PAA-conjugates were almost not inhibitory at low shear stress, NALM-6 cell rolling was nearly completely inhibited at high shear stress. The results indicate that multimeric conjugates of SiaLe(x), SiaLe(a) and sTyr are highly effective inhibitors of L-selectin-mediated cell adhesion particularly under flow conditions. Consequently, SiaLe(x), SiaLe(a) and/or sTyr on macromolecular carriers may be promising candidates for anti-inflammatory therapy.  相似文献   

16.
Heparin is an excellent inhibitor of P- and L-selectin binding to the carbohydrate determinant, sialyl Lewis(x). As a consequence of its anti-selectin activity, heparin attenuates metastasis and inflammation. Here we show that fucosylated chondroitin sulfate (FucCS), a polysaccharide isolated from sea cucumber composed of a chondroitin sulfate backbone substituted at the 3-position of the beta-D-glucuronic acid residues with 2,4-disulfated alpha-L-fucopyranosyl branches, is a potent inhibitor of P- and L-selectin binding to immobilized sialyl Lewis(x) and LS180 carcinoma cell attachment to immobilized P- and L-selectins. Inhibition occurs in a concentration-dependent manner. Furthermore, FucCS was 4-8-fold more potent than heparin in the inhibition of the P- and L-selectin-sialyl Lewis(x) interactions. No inhibition of E-selectin was observed. FucCS also inhibited lung colonization by adenocarcinoma MC-38 cells in an experimental metastasis model in mice, as well as neutrophil recruitment in two models of inflammation (thioglycollate-induced peritonitis and lipopolysaccharide-induced lung inflammation). Inhibition occurred at a dose that produces no significant change in plasma activated partial thromboplastin time. Removal of the sulfated fucose branches on the FucCS abolished the inhibitory effect in vitro and in vivo. Overall, the results suggest that invertebrate FucCS may be a potential alternative to heparin for blocking metastasis and inflammatory reactions without the undesirable side effects of anticoagulant heparin.  相似文献   

17.
L-selectin mediates lymphocyte homing by facilitating lymphocyte adhesion to addressins expressed in the high endothelial venules (HEV) of secondary lymphoid organs. Peripheral node addressin recognized by the MECA-79 antibody is apparently part of the L-selectin ligand, but its chemical nature has been undefined. We now identify a sulfated extended core1 mucin-type O-glycan, Gal beta 1-->4(sulfo-->6)GlcNAc beta 1-->3Gal beta 1-->3GalNAc, as the MECA-79 epitope. Molecular cloning of a HEV-expressed core1-beta 1,3-N-acetylglucosaminyltransferase (Core1-beta 3GlcNAcT) enabled the construction of the 6-sulfo sialyl Lewis x on extended core1 O-glycans, recapitulating the potent L-selectin-mediated, shear-dependent adhesion observed with novel L-selectin ligands derived from core2 beta1,6-N-acetylglucosaminyltransferase-I null mice. These results identify Core1-beta 3GlcNAcT and its cognate extended core1 O-glycans as essential participants in the expression of the MECA-79-positive, HEV-specific L-selectin ligands required for lymphocyte homing.  相似文献   

18.
19.
20.
The selectin family of adhesion molecules mediates attachment and rolling of neutrophils to stimulated endothelial cells. This step of the inflammatory response is a prerequisite to firm attachment and extravasation. We have reported that microspheres coated with sialyl Lewis(x) (sLe(x)) interact specifically and roll over E-selectin and P-selectin substrates (Brunk et al., 1996; Rodgers et al 2000). This paper extends the use of the cell-free system to the study of the interactions between L-selectin and sLe(x) under flow. We find that sLe(x) microspheres specifically interact with and roll on L-selectin substrates. Rolling velocity increases with wall shear stress and decreases with increasing L-selectin density. Rolling velocities are fast, between 25 and 225 microm/s, typical of L-selectin interactions. The variability of rolling velocity, quantified by the variance in rolling velocity, scales linearly with rolling velocity. Rolling flux varies with both wall shear stress and L-selectin site density. At a density of L-selectin of 800 sites/microm(2), the rolling flux of sLe(x) coated microspheres goes through a clear maximum with respect to shear stress at 0.7 dyne/cm(2). This behavior, in which the maintenance and promotion of rolling interactions on selectins requires shear stress above a threshold value, is known as the shear threshold effect. We found that the magnitude of the effect is greatest at an L-selectin density of 800 sites/microm(2) and gradually diminishes with increasing L-selectin site density. Our study is the first to reveal the shear threshold effect with a cell free system and the first to show the dependence of the shear threshold effect on L-selectin site density in a reconstituted system. Our ability to recreate the shear threshold effect in a cell-free system strongly suggests the origin of the effect is in the physical chemistry of L-selectin interaction with its ligand, and largely eliminates cellular features such as deformability or topography as its cause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号