首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A beta-glucanase (Z-glucanase) from Zymolyase was freed from a protease (Z-protease) by affinity chromatography on alpha 2-macroglobulin-Sepharose columns and used to solubilize proteins from isolated cell walls of Saccharomyces cerevisiae. The cell wall proteins were labeled with 125I and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The bulk of the labeled material had very low mobility. Its mannoprotein nature was demonstrated by precipitation with specific antibodies and by conversion to a band with an average molecular weight of 94,000 after incubation with endo-beta-N-acetylglucosaminidase. The intact mannoproteins were hydrolyzed by Z-protease, but were resistant to the enzyme when the carbohydrate was first removed by endo-beta-N-acetylglucosaminidase. In intact cells, lysis of cell walls by Z-glucanase required a previous incubation with z-protease, which led to solubilization of most of the 125I-labeled proteins. Other proteases that did not attack the cell wall mannoproteins were unable to substitute for Z-protease. The specific effect of Z-protease is consistent with the notion that mannoproteins form a surface layer of the cell wall that penetrates the wall to some depth and shields glucans from attack by Z-glucanase. Mannoproteins, however, do not appear to cover the inner face of the cell wall, because isolated cell walls, in contrast to intact cells, were completely solubilized by Z-glucanase in the absence of protease. The function of mannoproteins in determining cell wall porosity was highlighted by the finding that horseradish peroxidase (Mr, 40,000) causes lysis of cells that had been treated with Z-protease. Depletion of mannoproteins by Z-protease also resulted in the disappearance of a darkly stained surface layer of the cell wall, as observed by electron microscopy. Other agents that facilitate cell lysis by Z-glucanase, such as 2-mercaptoethanol, digitonin, and high concentrations of salts, caused little or no solubilization of mannoprotein. We assume that they perturb and loosen the structure of the mannoprotein network, thereby increasing its porosity. The implications of our results for the construction of the yeast cell wall and the anchoring of mannoprotein to the cell are discussed.  相似文献   

2.
The distribution of mannoproteins at the cell wall surface of Candida albicans was analyzed during the process of germination in conditions favoring adherence of germ tubes to a plastic matrix. Three cytochemical methods allowing the detection of concanavalin A binding sites, anionic sites and the enzyme acid phosphatase, respectively were used. All three methods gave similar results, indicating a spatial and temporal reorganization of some cell wall mannoproteins: a strong labeling was observed on blastoconidia; in contrast, as soon as the emergence of germ tubes took place, these reactions decreased dramatically at the surface of mother cells, whereas the germ tube surface was strongly stained. Some new components with multiple biological activities were detected at the germ-tube surface. Indeed, among mannoproteins responsible for an enhanced adhesion to plastic surfaces, two components with molecular weights of 68 and 60 to 62 kDa were shown to interact with laminin, fibrinogen, and C3d. This study therefore indicates that germination, and then adherence of germ tubes, imply a degradation of surface mannoproteins, and a simultaneous presentation of new molecules which can interact with their nonbiological materials or host proteins.  相似文献   

3.
Polyclonal antibodies (pAbs) and monoclonal antibodies (mAbs), raised against mannoprotein components from Candida albicans ATCC 26555 (serotype A) blastoconidia and mycelial cell walls, were used to investigate antigenic similarities among wall mannoproteins from other C. albicans serotype A and B strains, and from C. tropicalis and C. guilliermondii. Radioactively labelled walls isolated from cells grown at either 28 degrees C or 37 degrees C were digested with a beta-glucanase complex (Zymolyase 20T) to release cell-wall-bound mannoproteins. Numerous molecular species with different electrophoretic mobilities were released from the various isolates. Differences appeared to be related to both the organism and the growth temperature. Among the major protein components solubilized were mannoproteins larger than 100 kDa (high molecular mass mannoproteins), heterogeneous in size in most cases. Antigenic homology was detected among the cell wall high molecular mass mannoproteins of the two C. albicans serotype A isolates, whereas significant qualitative and quantitative differences were detected between serotype A and serotype B cell-wall-bound antigenic profiles. Moreover, C. tropicalis and C. guilliermondii wall antigenic determinants were not recognized by the preparations of pAbs and mAbs raised against C. albicans walls. A mannoprotein with a molecular mass of 33-34 kDa was present in the enzymic wall digests of all the organisms studied. When probed with pAbs raised against the protein moiety of the 33 kDa cell wall mannoprotein of Saccharomyces cerevisiae, antigenic cross-reactivity was observed in all cases except C. tropicalis. There appear to be significant antigenic differences between the mannoproteins of different isolates of C. albicans, and between those of C. albicans and other Candida species.  相似文献   

4.
Candidiasis are among the fungal infections the most difficult to diagnose and treat. Research focused on specific fungal components which are absent in the host, such as the cell wall has lead to a better understanding of Candida albicans pathogenicity and clinical impact. The cell wall is responsible for antigenic expression and primary interaction with the host. It is composed mainly of beta-glucans, chitin and mannoproteins, which account for the rigidity of the wall and for the fungal morphology. Of these components, mannoproteins might carry a "morphogenetic code" which might modulate the molecular architecture of the cell wall. The features of specific cell wall proteins as part of building blocks to form this structure is revised, and the usefulness of monoclonal antibodies obtained against cell wall components to study those processes, together with their clinical applicability, is discussed.  相似文献   

5.
Abstract Mild alkaline solutions (β-elimination), after removing the non-covalently bonded wall materials by hot SDS, released 13% and 26% of remaining wall proteins from mycelial and yeast cells of Candida albicans , respectively. When the β-elimination was carried out after digestion of the walls with chitinase, four-fold more proteinaceous materials were released from mycelium and a similar amount in yeast walls. The solubilized materials were shown to be highly polydisperse, and endo-glycosidase H reduced their polydispersity and molecular masses, revealing different electrophoretic patterns in yeast and mycelial cell walls. The solubilized mycelial proteins carried N-glycosidic sugar chains and the epitopes recognized by two monoclonal antibodies were preserved, although showing a different behaviour in yeast walls. These results are consistent with the idea that significant amounts of intrinsic O-glycosylated mannoproteins are interconnected in the walls of C. albicans .  相似文献   

6.
Abstract Treatment of Saccharomyces cerevisiae a cells with α-factor partially inhibits mannosylation of the high M r mannoproteins, although there is an increase in the total amount of these molecules present in the wall. They show a similar mobility in SDS-acrylamide gels to those from untreated mnn2 cells. No other significant effects on wall mannoproteins have been observed, except a decrease in the amount of the 29 kDa species.  相似文献   

7.
8.
Analysis of velum-forming yeast cell wall components released by beta-1,3-glucanase treatment were compared with those of a non velum-forming yeast. SDS-PAGE electrophoresis and Western blotting with ConA-peroxidase staining of mannoproteins allowed us to identify a 49-kDa mannoprotein present in the cell wall of the velum-forming yeast and hardly visible in the control. The cell wall nature of this protein was confirmed by labelling with the non-permeable sulfosuccinimydiyl-6-(biotinamido)hexanoate reagent. A partial purification of this mannoprotein by anion exchange HPLC followed by surface hydrophobicity determination revealed that the fraction containing the 49-kDa mannoprotein was the most hydrophobic. Since cell surface hydrophobicity plays an important role in aggregate formation, it is likely that this mannoprotein is involved in velum formation.  相似文献   

9.
Glycosylphosphatidylinositol (GPI)-anchored proteins in fungi are found at the cell surface, either as plasma membrane proteins (GPI-PMPs) or attached by a remnant of the GPI-anchor to the cell wall (GPI-CWPs). GPI-CWPs can be extracted from the cell wall by treatment with hydrofluoric acid (HF), which cleaves the phosphodiester bond that is present in the remnant of the GPI-anchor. The filamentous fungus Aspergillus niger contains at least seven HF-extractable cell wall mannoproteins. One gene encoding an HF-extractable cell wall mannoprotein, cwpA, was cloned and further characterised. The protein sequence of CwpA indicated the presence of two hydrophobic signal sequences both at the N-terminus and C-terminus of the protein, for entering the ER and the addition of a GPI-anchor, respectively. A CwpA-specific antiserum was raised and in combination with fractionation experiments, we show that this protein was abundantly present as an HF-extractable protein in the cell wall of A. niger.  相似文献   

10.
Wall mannoproteins of the two (yeast and mycelial) cellular forms of Candida albicans were solubilized by different agents. Boiling in 2% (w/v) SDS was the best method, as more than 70% of the total mannoprotein was extracted. Over 40 different bands (from 15 to 80 kDal) were detected on SDS-polyacrylamide gel electrophoresis of this material. The residual wall mannoproteins were released after enzymic (Zymolyase and endogenous wall beta-glucanases) degradation of wall glucan, suggesting that they are covalently linked to this structural polymer. Four bands (of 160 kDal, 205 kDal and higher molecular mass) were observed in the material released from yeast walls but only the two smaller components were detected in the material obtained from mycelial walls. Moreover, the mannoproteins of high molecular mass, which are covalently linked in walls of normal cells, were not incorporated into walls of regenerating protoplasts, but non-covalently linked mannoproteins were retained from the beginning of the process.  相似文献   

11.
To assess the dynamics of synthesis of the wall by regenerating Candida albicans protoplasts deposition of chitin and mannoproteins were investigated ultrastructurally using wheat germ agglutinin conjugated with either horseradish peroxidase or colloidal gold, and Concanavalin A coupled to ferritin respectively.Freshly prepared protoplasts lacked wheat germ agglutinin receptor sites but after 1–2 h of regeneration, they were detected. After 4–5 h of regeneration, the cell wall showed a discrete structure which was only labelled with wheat germ agglutinin in thin sections. At this stage of regeneration the outermost layer of the wall was labelled with clusters of Concanavalin A-ferritin particles.After 8 h regeneration, the cell wall appeared compact, and homogenously marked with wheat germ agglutinin whereas only the surface layers appeared consistently labelled with Concanavalin A-ferritin.From these observations we conclude that C. albicans protoplasts are able to regenerate in liquid medium a cell wall consisting of a network of chitin fibrils and mannoproteins at least (glucan polymers were not determined in the present cytological study). The former are the fundamental component of the inner layers at early stages of regeneration, whereas the latter molecules are predominant in the outer layers of the wall.Abbreviations WGA-HRP wheat germ agglutinin conjugated with horseradish peroxidase - WGA-Au wheat germ agglutinin conjugated with colloidal gold - Con A-ferritin Concanavalin A coupled to ferritin  相似文献   

12.
The cell wall of Saccharomyces cerevisiae consists of glucan, chitin and various kinds of mannoproteins. Major parts of mannoproteins are synthesized as glycosylphosphatidylinositol (GPI)-anchored proteins and are then transferred to cell wall beta-1,6-glucan. A glycosyltransferase has been hypothesized to catalyse this transfer reaction. A database search revealed that the products of YKL046c and DFG5 are homologous to bacterial mannosidase. These genes are homologous to each other and have primary structures characteristic of GPI-anchored proteins. Although single disruptants of ykl046c and dfg5 were viable, ykl046cDelta was hypersensitive to a cell wall-digesting enzyme (zymolyase), suggesting that this gene is involved in cell wall biosynthesis. We therefore designated this gene as DCW1 (defective cell wall). A double disruptant of dcw1 and dfg5 was synthetically lethal, indicating that the functions of these gene products are redundant, and at least one of them is required for cell growth. Cells deficient in both Dcw1p and Dfg5p were round and large, had cell walls that contained an increased amount of chitin and secreted a major cell wall protein, Cwp1p, into the medium. Biochemical analyses showed that epitope-tagged Dcw1p is an N-glycosylated, GPI-anchored membrane protein and is localized in the membrane fraction including the cell surface. These results suggest that both Dcw1p and Dfg5p are GPI-anchored membrane proteins and are required for normal biosynthesis of the cell wall.  相似文献   

13.
Abstract The cell wall of Candida albicans contains mannoproteins that are covalently associated with β-1,6-glucan. When spheroplasts were allowed to regenerate a new cell wall, initially non-glucosylated cell wall proteins accumulated in the medium. While the spheroplasts became osmotically stable, β-1,6-glucosylated proteins could be identified in their cell wall by SDS-extraction or β-1,3-glucanase digestion. At later stages of regeneration, β-1,3-glucosylated proteins were also found. Hence, incorporation of proteins into the cell wall is accompanied by extracellular coupling to β-1,6-/β-l,3-glucan. The SDS-extractable glucosylated proteins probably represent degradation products of wall proteins rather than their precursors. Tunicamycin delayed, but did not prevent the formation of β-1,6-glucosylated proteins, demonstrating that β-1,6-glucan is not attached to N -glycosidic side-chains of wall proteins.  相似文献   

14.
The nutritional value of isogenic yeast strains and two microalgal species for gnotobiotically grown Artemia was examined. Yeast cell wall mutants were always better feed for Artemia than their respective wild type. Yeast cells harbouring null mutants for enzymes involved early in the biochemical pathway for cell wall mannoproteins synthesis performed best as feed for Artemia. Yeast cells defective in chitin or β-glucan production were scored in second order. The mnn6 isogenic yeast mutant, harbouring a null mutation for mannoprotein phosphorylation, performed poorly as feed for Artemia, although with good growth. These results suggest that any mutation affecting the yeast cell wall scaffolding by reducing the amount of covalent links between the major components of yeast cell wall, namely mannoproteins, β-glucans and chitin, is sufficient to improve the digestibility for Artemia. The results with microalgae indicated that within one species, strains can have different nutritional value under gnotobiotic conditions. The growth phase was another parameter influencing feed quality, although here it was not possible to reveal the exact cause. It is anticipated that the standard Artemia gnotobiotic growth test is an excellent tool to study the mode of action of bacteria, with a probiotic as well as with a pathogenic character.  相似文献   

15.
Incorporation of polysaccharides into the walls of regenerating protoplasts of Candida albicans was followed in the presence of papulacandin B, tunicamycin and nikkomycin. With the first drug, chitin was incorporated normally whereas incorporation of glucans and mannoproteins was significantly decreased. Tunicamycin decreased incorporation of all wall polymers when added at the beginning of the regeneration process but blocked only mannan and alkali-insoluble glucan incorporation when added after 5 h. Nikkomycin inhibited chitin synthesis, and the walls formed by the protoplasts were enriched in alkali-soluble glucan. Pulse-chase experiments suggested that a precursor-product relationship between the alkali-soluble and alkali-insoluble glucans existed in the wall. The results obtained with the antibiotics were confirmed and extended by cytological studies using wheat-germ agglutinin labelled with colloidal gold and concanavalin A-ferritin as specific markers of chitin and mannoproteins respectively. The results support the idea that regeneration of walls by protoplasts occurs in two steps: firstly, a chitin microfibrillar skeleton is formed, and in a later step glucan-mannoprotein complexes are added to the growing structure. The chitin skeleton probably allows the orderly spatial arrangement of the other polymers giving rise to the regenerated cell wall.  相似文献   

16.
Purified zymolyase containing β-glucanase activity preferentially released a 29 kDa mannoprotein from isolated yeast cell walls and a high-molecular-mass (greater than 120 kDa) material. Endo-β-N-acetylglucosaminidase H digestion indicated that the 29 kDa mannoprotein contains a unique core coligosaccharide N-glycosidically linked to a 26 kDa peptide moiety. Cells grown in the presence of tunicamycin incorporated the nonglycosylated 26 kDa peptide into the wall, but not the large mannoprotein molecules. Treatment of isolated walls with SDS solubilized more than 30 different mannoproteins, one of tehm being the 29 kDa species, but the large-size molecules were not affected. Regenerating protoplasts incorporated into the forming walls most of the SDS-solubilizable species seen in mature cell walls, but the zymolyase-solubilizable mannoproteins were absent. Wall mannoproteins have also been compared with those of the periplasmic space, most of the species being commonly present at both compartments. Turnover of individual species has been studied by pulse and chase experiments. While mannoproteins from the walls remain stable for long periods, periplasmic molecules exhibit a rapid turnover rate.  相似文献   

17.
The attachment of Candida utilis, Kluyveromyces lactis, and Saccharomyces cerevisiae cells stimulates an increase in the content of cell wall polysaccharides and mannoproteins, accompanied by increased resistance to the inhibitory effect of 5-bromo-6-azauracil. The covalent attachment of viable yeasts was accomplished (via dialdehyde-amino spacers) by reaction of aldehyde groups of the carrier with reactive amino groups in accessible cell surface proteins. The employed technique enables the optimization of yeast sources of β-1,3-, β-1,6- glucans, mannan, and mannoprotein. The modulatory effect of the cell attachment is discussed.  相似文献   

18.
By pulse and chase labeling experiments, two independent mannoprotein pools have been found associated with the Saccharomyces cerevisiae envelope. One of them probably corresponds to mannoproteins localized in the periplasmic space. These molecules showed a high turnover rate at 28° C. The second pool is formed by intrinsic wall mannoproteins which are apparently stable for long periods of time, after a small initial turnover. These results suggest that at least part of the mannoproteins initially found in the periplasmic space may move into the wall.The time lag between the addition of the radioactive precursors and their incorporation in the cell envelope (20–30 min for amino acids and about 10 min for carbohydrate) indicates that protein formation and carbohydrate incorporation take place in succession. Moreover, bulk glycosylation of mannoproteins seems to occur close in time to the moment of secretion into the periplasmic space.  相似文献   

19.
The milk yeast Kluyveromyces lactis is an alternative model yeast to the well established Saccharomyces cerevisiae. The cell wall of these fungi consists of polysaccharides (i.e. long chains of β-1,3- and β-1,6-linked sugar chains and some chitin) and mannoproteins, both of which are continually adapted to environmental conditions in terms of their abundance and organization. This implies the need to perceive signals at the cell surface and to transform them into a proper cellular response. The signal transduction cascade involved in this process is generally referred to as the cell wall integrity (CWI) pathway. CWI signaling and cell wall composition have been extensively studied in the Baker's yeast S. cerevisiae and are also of interest in other yeast species with commercial potential, such as K. lactis. We here summarize the results obtained in the past years on CWI signaling in K. lactis and use a comparative approach to the findings obtained in S. cerevisiae to highlight special adaptations to their natural environments.  相似文献   

20.
Antibody response to Candida albicans cell wall antigens   总被引:3,自引:0,他引:3  
The cell wall of Candida albicans is not only the structure where many essential biological functions reside but is also a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both carbohydrate and protein moieties are able to trigger immune responses. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to profoundly influence the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins to host ligands. In this review we examine various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo. Some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidiasis, particularly the disseminated form. In addition, recent studies have focused on the potential of antibodies against the cell wall protein determinants in protecting the host against infection. Hence, a better understanding of the humoral response triggered by the cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures for the serodiagnosis of disseminated candidiasis, and (ii) novel prophylactic (vaccination) and therapeutic strategies to control this type of infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号