首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A protective effect of bicarbonate (BC) against extraction of the extrinsic proteins, predominantly the Mn-stabilizing protein (PsbO protein), during treatment of Photosystem II (PS II) membrane fragment from pea with 2 M urea, and at low pH (using incubation in 0.2 M glycine-HCl buffer, pH 3.5 or 0.5 M citrate buffer, pH 4.0-4.5) was detected. It was shown that the extraction of the proteins with Mw 24 kDa (PsbP protein) and 18 kDa (PsbQ protein) by the use of highly concentrated solutions of NaCl does not depend on the presence of BC in the medium. An optimal concentration of BC at which it produces the maximum protecting effect was shown to be between 1 mM and 10 mM. The addition of formate did not influence the protein extraction but it reduced the stabilizing effect of BC. Independence of the stabilizing effect on the presence of the functionally active Mn within the water-oxidizing complex indicates that the protecting effect of BC is not related to its interaction with Mn ions. The fact that there is a preferable sensitivity of the PsbO protein to the absence of BC in the medium during all the treatments makes it possible to suggest that either BC interacts directly with the PsbO protein or it binds to some other sites within PS II and this binding facilitates the preservation of the native structure of this protein.  相似文献   

2.
3.
Removal of 23 and 17 kDa water-soluble polypeptides from PS II membranes causes a marked decrease in oxygen-evolution activity, exposes the oxidizing side of PS II to exogenous reductants (Ghanotakis, D.F., Babcock, G.T. and Yocum, C.F. (1984) Biochim. Biophys. Acta 765, 388–398) and alters a high-affinity binding site for Ca2+ in the oxygen-evolving complex (Ghanotakis, D.F., Topper, J.N., Babcock, G.T. and Yocum, C.F. (1984) FEBS Lett. 170, 169–173). We have examined further the state of the functional Mn complex in PS II membranes from which the 17 and 23 kDa species have been removed by high-salt treatment. These membranes contain a structurally altered Mn complex which is sensitive to destruction by low concentrations of NH2OH which cannot, in native PS II membranes, cause extraction of functional Mn. In addition to NH2OH, a wide range of other small (H2O2, NH2NH2, Fe2+) and bulky (benzidine, hydroquinone) electron donors extract Mn (up to 80%) from the polypeptide-depleted PS II preparations. This extraction is due to reduction of the functional Mn complex since light, which would generate higher oxidation states within the Mn complex, prevents Mn release by reductants. Release of Mn by reductants does not extract the 33 kDa water-soluble protein implicated in Mn binding to the oxidizing side of PS II, although the protein can be partially or totally extracted from Mn-depleted preparations by exposure to high ionic strength or to high (0.8 M) concentrations of Tris. We view our results as evidence for a shield around the Mn complex of the oxygen-evolving complex comprised of the 33 kDa polypeptide along with the 23 and 17 kDa proteins and tightly bound Ca2+.  相似文献   

4.
《BBA》1987,890(1):6-14
The removal of peripheral membrane proteins of a molecular mass of 17 and 23 kDa by washing of spinach Photosystem-II (PS II) membranes in 1 M salt between pH 4.5 and 6.5 produces a minimal loss of the S1 → S2 reaction, as seen by the multiline EPR signal for the S2 state of the water-oxidizing complex, while reversibly inhibiting O2 evolution. The multiline EPR signal simplifies from a ‘19-line’ spectrum to a ‘16-line’ spectrum, suggestive of partial uncoupling of a cluster of 3 or 4 to yield photo-oxidation of a binuclear Mn site. Alkaline salt washing progressively releases a 33 kDa peripheral protein between pH 6.5 and 9.5, in direct parallel with the loss of O2 evolution and the S2 multiline EPR signal. The 33 kDa protein can be partially removed (20%) at pH 8.0 prior to managanese release. Salt treatment releases four Mn ions between pH 8.0 and 9.5 with the first 2 or 3 Mn ions released cooperatively. A common binding site is thus suggested in agreement with earlier EPR spectroscopic data establishing a tetranuclear Mn site. At least two of these Mn ions bind directly at a site in the PS II complex for which photooxidation by the reaction center is controlled by the 33 kDa protein. The washing of PS II membranes with 1 M CaCl2 to affect the release of the 33 kDa protein, while preserving Mn binding to the membrane (Ono, T.-A. and Inoue, Y. (1983) FEBS Lett. 164, 255–260), is found to leave some 33 kDa protein undissociated in proportion to the extent of O2 evolution and S2 multiline yield. These depleted membranes do not oxidize water or produce the normal S2 state without the binding of the 33 kDa protein. A method for the accurate determination of relative concentrations of the peripheral membrane proteins using gel electrophoresis is presented.  相似文献   

5.
Cross-reconstitution of the extrinsic proteins and Photosystem II (PS II) from a green alga, Chlamydomonas reinhardtii, and a higher plant,Spinacia oleracea, was performed to clarify the differences of binding properties of the extrinsic proteins between these two species of organisms. (1) Chlamydomonas PsbP and PsbQ directly bound to Chlamydomonas PS II independent of the other extrinsic proteins but not to spinach PS II. (2) Chlamydomonas PsbP and PsbQ directly bound to the functional sites of Chlamydomonas PS II independent of the origins of PsbO, while spinach PsbP and PsbQ only bound to non-functional sites on Chlamydomonas PS II. (3) Both Chlamydomonas PsbP and spinach PsbP functionally bound to spinach PS II in the presence of spinach PsbO. (4) While Chlamydomonas PsbP functionally bound to spinach PS II in the presence of Chlamydomonas PsbO, spinach PsbP bound loosely to spinach PS II in the presence of Chlamydomonas PsbO with no concomitant restoration of oxygen evolution. (5) Chlamydomonas PsbQ bound to spinach PS II in the presence of Chlamydomonas PsbP and PsbO or spinach PsbO but not to spinach PS II in the presence of spinach PsbP and Chlamydomonas PsbO or spinach PsbO. (6) Spinach PsbQ did not bind to spinach PS II in the presence of Chlamydomonas PsbO and PsbP. On the basis of these results, we showed a simplified scheme for binding patterns of the green algal and higher plant extrinsic proteins with respective PS II.  相似文献   

6.
《BBA》1985,809(2):245-259
We used Triton-prepared PS II membranes in studies of the inactivation of O2 evolution and solubilization of Mn and specific PS II polypeptides by NH2OH, N- and O-substituted NH2OH derivatives, NH2NH2 and NH4Cl. The inactivation of O2-evolution, solubilization of Mn and the solubilization of the extrinsic PS II polypeptides (17, 23 and 33 kDa) proved closely correlated, half-maximal effects occurring with only 100 μM NH2OH. NH2OH (2 mM) and NaCl (1 M) extractions solubilized about one-half the amount of protein solubilized by 0.8 M Tris-HCl (pH 8.0). The inactivation of the Mn-S-state complex proceeded by apparent first-order kinetics, the rate constant dependent on NH2OH (CH3NHON) concentration and pH. In the range of micromolar concentrations of NH2OH, this inactivation did not occur via a cooperative type mechanism. Depletion of the 17 and 23 kDa proteins modified the pH dependency of inactivation (from pH 7.8 to 6.5) and also resulted in an approx. 2-fold maximum increase in the inactivation rate constant. Significantly, reconstitution of such NaCl-TMF-2 membranes with the 17 and 23 kDa proteins reverted both the pH dependency and the inactivation rate constant to that of TMF-2. A hierarchy of effectivity for solubilization of Mn and protein, which was highly correlated with inactivation of the Mn-S-state enzyme, was observed among NH2OH and its derivatives. This same hierarchy was observed irrespective of prior depletion of the 17 and 23 or the 17, 23 and 33 kDa proteins from TMF-2. The hierarchy of effectivity among derivatives was: NH2OH > CH3NHOH > NH2NH2, NH2OSO3 > NH2OCH3 ⪢ CH3NHOCH3, NH4Cl. The function(s) of the extrinsic PS II proteins as determinants of the reactivity of the Mn-S-state complex with polar amine vs other type compounds is discussed.  相似文献   

7.
Analysis of the Structure of the PsbO Protein and its Implications   总被引:3,自引:0,他引:3  
The PsbO protein is a ubiquitous extrinsic subunit of Photosystem II (PS II), the water splitting enzyme of photosynthesis. A recently determined 3D X-ray structure of a cyanobacterial protein bound to PS II has given an opportunity to conduct complete analyses of its sequence and structural characteristics using bioinformatic methods. Multiple sequence alignments for the PsbO family are constructed and correlated with the cyanobacterial structure. We identify the most conserved regions of PsbO and the mapping of their positions within the structure indicates their functional roles especially in relation to interactions of this protein with the lumenal surface of PS II. Homologous models for eukaryotic PsbO were built in order to compare with the prokaryotic protein. We also explore structural homology between PsbO and other proteins for which 3D structures are known and determine its structural classification. These analyses contribute to the understanding of the function and evolutionary origin of the PS II manganese stabilising protein.  相似文献   

8.
C Preston  M Seibert 《Biochemistry》1991,30(40):9615-9624
The diphenylcarbazide(DPC)/Mn2+ assay [Hsu, B.-D., Lee, J.-Y., & Pan, R.-L. (1987) Biochim. Biophys. Acta 890, 89-96] was used to assess the amount of the high-affinity Mn-binding site in manganese-depleted photosystem II (PS II) membrane fragments from spinach and Scenedesmus obliquus. The assay mechanism at high DPC concentration was shown to involve noncompetitive inhibition of only half of the control level of DPC donation to PS II by micromolar concentrations of Mn at pH 6.5 (i.e., one of two DPC donation sites is inhibited). At low DPC concentration both DPC and Mn2+ donate to PS II additively. Treatment with the carboxyl amino acid modifier 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) inhibited half of the high-affinity Mn-binding site in spinach and Scenedesmus WT PS II membranes and all of the available site in Scenedesmus LF-1 mutant PS II membranes. A similar EDC concentration dependence was observed in all cases. Addition of 2 mM MnCl2 to the 10 mM EDC modification buffer provided complete protection for the Mn-binding site from modification. This protection was specific for Mn2+; six other divalent cations were ineffective. We conclude that EDC modifies that half of the high-affinity Mn-binding site that is insensitive to the histidine modifier diethyl pyrocarbonate (DEPC) [Seibert, M., Tamura, N., & Inoue, Y. (1989) Biochim. Biophys. Acta 974, 185-191] and directly affects ligands that bind Mn. The effects of EDC and DEPC that influence the high-affinity site are mutually exclusive and are specific to the lumenal side of the PS II membrane. Removal of the two more loosely bound of the four functional Mn from PS II membranes uncovers that part of the high-affinity site associated with carboxyl but not histidyl residues. We suggest that carboxyl residues on reaction center proteins are associated with half of the high-affinity Mn-binding site in PS II and are involved along with histidine residues in binding Mn functional in the O2-evolving process.  相似文献   

9.
Three extrinsic proteins (PsbO, PsbP and PsbQ), with apparent molecular weights of 33, 23 and 17 kDa, bind to the lumenal side of Photosystem II (PS II) and stabilize the manganese, calcium and chloride cofactors of the oxygen evolving complex (OEC). The effect of these proteins on the structure of the tetramanganese cluster, especially their possible involvement in manganese ligation, is investigated in this study by measuring the reported histidine-manganese coupling [Tang et al. (1994) Proc Natl Acad Sci USA 91: 704–708] of PS II membranes depleted of none, two or three of these proteins using ESEEM (electron spin echo envelope modulation) spectroscopy. The results show that neither of the three proteins influence the histidine ligation of manganese. From this, the conserved histidine of the 23 kDa protein can be ruled out as a manganese ligand. Whereas the 33 and 17 kDa proteins lack conserved histidines, the existence of a 33 kDa protein-derived carboxylate ligand has been posited; our results show no evidence for a change of the manganese co-ordination upon removal of this protein. Studies of the pH-dependence of the histidine–manganese coupling show that the histidine ligation is present in PS II centers showing the S2 multiline EPR signal in the pH-range 4.2–9.5. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Yu H  Xu X  Britt RD 《Biochemistry》2006,45(10):3404-3411
An earlier study shows that a 30 min incubation of spinach PS II submembrane fragments at pH 6.3 in the presence of 10 microM HgCl(2) induces a 40% depletion of the 33 kDa protein without the apparent release of the 17 and 23 kDa proteins [Bernier, M., and Carpentier, R. (1995) FEBS Lett. 360, 251-254]. Here we report that the photosystem II 33 kDa extrinsic protein is fully removed by HgCl(2) added at micromolar and higher concentrations (0.25, 20, and 50 microM), with the 17 and 23 kDa extrinsic proteins and other intrinsic proteins remaining bound to the reaction center. The data presented here put in doubt the "regulatory cap" model of PS II, which follows the OEC-33 kDa-23 kDa-17 kDa binding order, as these results directly demonstrate that the 33 kDa protein can be removed without affecting the binding of the 23 and 17 kDa proteins to the intrinsic subunits of PS II. This suggests that each extrinsic protein may possess its own binding site on PS II. A possible mechanism for HgCl(2) upon the release of the 33 kDa protein is discussed.  相似文献   

11.
Exposure of photosystem II membranes to trypsin that has been treated to inhibit chymotrypsin activity produces limited hydrolysis of manganese stabilizing protein. Exposure to chymotrypsin under the same conditions yields substantial digestion of the protein. Further probing of the unusual insensitivity of manganese stabilizing protein to trypsin hydrolysis reveals that increasing the temperature from 4 to 25 degrees C will cause some acceleration in the rate of proteolysis. However, addition of low (100 microM) concentrations of NH2OH, that are sufficient to reduce, but not destroy, the photosystem II Mn cluster, causes a change in PS II-bound manganese stabilizing protein that causes it to be rapidly digested by trypsin. Immunoblot analyses with polyclonal antibodies directed against the N-terminus of the protein, or against the entire sequence show that trypsin cleavage produces two distinct peptide fragments estimated to be in the 17-20 kDa range, consistent with proposals that there are 2 mol of the protein/mol photosystem II. The correlation of trypsin sensitivity with Mn redox state(s) in photosystem II suggest that manganese stabilizing protein may interact either directly with Mn, or alternatively, that the polypeptide is bound to another protein of the photosystem II reaction center that is intimately involved in binding and redox activity of Mn.  相似文献   

12.
Dark-grown cotyledons of pine (Pinus thunbergit) did not exhibitO2 evolution, but this capability was rapidly activated by illuminationfor a short period (photoactivation). To examine the biochemicalchanges which accompany the process of photoactivation in gymnosperms,a method enabling the preparation of highly active O2-evolvingphotosystem II (PS II) membranes was applied to light-grown,dark-grown, and photoactivated cotyledons. PS II membranes preparedfrom light-grown cotyledons exhibited high O2-evolving activity,and contained all the intrinsic proteins as well as the threeextrinsic proteins (32, 23 and 17 kDa) associated with PS II.These membranes were also found to contain 4.4 Mn and 0.83 Ca/PSII reaction center. PS II membranes from dark-grown cotyledonscontained all the intrinsic proteins, but preserved only 32kDa extrinsic protein, and zero Mn and 0.85 Ca/PS II reactioncenter. The two extrinsic proteins (23 and 17 kDa) absent inthe PS II membranes from dark-grown cotyledons were, however,present as mature forms in whole thylakoid membranes from thecorresponding sample. The PS II membranes isolated from photoactivatedcotyledons showed a high activity of O2 evolution and retainedthe three extrinsic proteins, 5.3 Mn and 1.1 Ca/PS II reactioncenter, respectively. The results indicated that Mn and thetwo extrinsic proteins were tightly integrated in the O2-evolvingapparatusduring the process of photoactivation but integration of Capreceded the integration of Mn by photoactivation. (Received December 9, 1991; Accepted February 1, 1992)  相似文献   

13.
Extraction conditions have been found which result in the retention of manganese to the 33-34 kDa protein, first isolated as an apoprotein by Kuwabara and Murata (Kuwabara, T. and Murata, N. (1979) Biochim. Biophys Acta 581, 228-236). By maintaining an oxidizing-solution potential, with hydrophilic and lipophilic redox buffers during protein extraction of spinach grana-thylakoid membranes, the 33-34 kDa protein is observed to bind a maximum of 2 Mn/protein which are not released by extended dialysis versus buffer. This manganese is a part of the pool of 4 Mn/Photosystem II normally associated with the oxygen-evolving complex. The mechanism for retention of Mn to the protein during isolation appears to be by suppression of chemical reduction of natively bound, high-valent Mn to the labile Mn(II) oxidation state. This protein is also present in stoichiometric levels in highly active, O2-evolving, detergent-extracted PS-II particles which contain 4-5 Mn/PS II. Conditions which result in the loss of Mn and O2 evolution activity from functional membranes, such as incubation in 1.5 mM NH2OH or in ascorbate plus dithionite, also release Mn from the protein. The protein exists as a monomer of 33 kDa by gel filtration and 34 kDa by gel electrophoresis, with an isoelectric point of 5.1 +/- 0.1. The protein exhibits an EPR spectrum only below 12 K which extends over at least 2000 G centered at g = 2 consisting of non-uniformly separated hyperfine transitions with average splitting of 45-55 G. The magnitude of this splitting is nominally one-half the splitting observed in monomeric manganese complexes having O or N donor ligands. This is apparently due to electronic coupling of the two 55Mn nuclei in a presumed binuclear site. Either a ferromagnetically coupled binuclear Mn2(III,III) site or an antiferromagnetically coupled mixed-valence Mn2(II,III) site are considered as possible oxidation states to account for the EPR spectrum. Qualitatively similar hyperfine structure splittings are observed in ferromagnetically coupled binuclear Mn complexes having even-spin ground states. The extreme temperature dependence suggests the population of low-lying excited states such as are present in weakly coupled dimers and higher clusters of Mn ions, or, possibly, from efficient spin relaxation such as occurs in the Mn(III) oxidation state. Either 1.5 mM NH2OH or incubation with reducing agents abolishes the low temperature EPR signal and releases two Mn(II) ions to solution. This is consistent with the presence of Mn(III) in the isolated protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
We sought a rapid, non‐intrusive, whole‐tissue measure of the functional photosystem II (PS II) content in leaves. Summation of electrons, delivered by a single‐turnover flash to P700+ (oxidized PS I primary donor) in continuous background far‐red light, gave a parameter S in absorbance units after taking into account an experimentally determined basal electron flux that affects P700 redox kinetics. S was linearly correlated with the functional PS II content measured by the O2 yield per single‐turnover repetitive flash in Arabidopsis thaliana expressing an antisense construct to the PsbO (manganese‐stabilizing protein in PS II) proteins of PS II (PsbO mutants). The ratio of S to zmax (total PS I content in absorbance units) was comparable to the PS II/PS I reaction‐center ratio in wild‐type A. thaliana and in control Spinacea oleracea. Both S and S/zmax decreased in photoinhibited spinach leaf discs. The whole‐tissue functional PS II content and the PS II/photosystem I (PS I) ratio can be non‐intrusively monitored by S and S/zmax, respectively, using a quick P700 absorbance protocol compatible with modern P700 instruments.  相似文献   

15.
It is shown that restoration of photoinduced electron flow with added Mn2+ (measured by photoreduction of DCPIP and photoinduced change of chlorophyll fluorescence yield) in Mn-depleted Photosystem II (PS II) membrane fragments isolated from spinach chloroplasts, is considerably increased by exogenous histidine (His). The stimulating effect of His is not observed if other electron donors (NH2OH or diphenylcarbazide) are used instead of Mn2+. His added alone does not induce electron transfer in Mn-depleted PS II preparations. Investigation of pH dependence of the stimulating effect of 2 mM His shows that the effect is observed only at pH > 5.0, it gives a 50% activation around pH 6.0 and saturates at pH 7.0–7.5. Nearly 200 μM His is required for a 50 effect at pH 7.0. It is suggested that the added His can be involved in stimulation of electron transfer on the donor side of PS II through direct interaction of Mn2+ with deprotonated form(s) of His resulting in formation of Mn–His complexes capable of efficient electron donation to PS II (though it is not excluded that His serves as a base that takes part in proton exchange coupled with redox reactions on the donor side of PS II or as an electron donor to the oxidized Mn).  相似文献   

16.
《BBA》1985,806(2):283-289
Treatment of Photosystem II particles with 1.2 M CaCl2 released three proteins of 33, 24 and 18 kDa of the photosynthetic oxygen evolution system, but left Mn bound to the particles as demonstrated by Ono and Inoue (Ono, T. and Inoue, Y. (1983) FEBS Lett. 164, 252–260). Oxygen-evolution activity of the CaCl2-treated particles was very low in a medium containing 10 mM NaCl as a salt, but could be restored by the 33-kDa protein. When the particles were incubated in 10 mM NaCl at 0°C, two of the four Mn atoms per oxygen-evolution system were released with concomitant loss of oxygen-evolution activity. The 33-kDa protein suppressed the release of Mn and the inactivation during the incubation. These findings from reconstitution experiments suggest that the 33-kDa protein acts to preserve Mn atoms in the oxygen-evolution system. The 33-kDa protein could be partially substituted by 100 or 150 mM Cl for the preservation of the Mn and oxygen-evolution activity. The Mn in Photosystem II particles enhanced rebinding of the 33-kDa protein to the particles.  相似文献   

17.
Besides an essential role in optimizing water oxidation in photosystem II (PSII), it has been reported that the spinach PsbO protein binds GTP [C. Spetea, T. Hundal, B. Lundin, M. Heddad, I. Adamska, B. Andersson, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 1409-1414]. Here we predict four GTP-binding domains in the structure of spinach PsbO, all localized in the beta-barrel domain of the protein, as judged from comparison with the 3D-structure of the cyanobacterial counterpart. These domains are not conserved in the sequences of the cyanobacterial or green algae PsbO proteins. MgGTP induces specific changes in the structure of the PsbO protein in solution, as detected by circular dichroism and intrinsic fluorescence spectroscopy. Spinach PsbO has a low intrinsic GTPase activity, which is enhanced fifteen-fold when the protein is associated with the PSII complex in its dimeric form. GTP stimulates the dissociation of PsbO from PSII under light conditions known to also release Mn(2+) and Ca(2+) ions from the oxygen-evolving complex and to induce degradation of the PSII reaction centre D1 protein. We propose the occurrence in higher plants of a PsbO-mediated GTPase activity associated with PSII, which has consequences for the function of the oxygen-evolving complex and D1 protein turnover.  相似文献   

18.
The sll1418 gene encodes a PsbP-like protein in Synechocystis sp. PCC 6803. Expression of sll1418 was similar in BG-11 and in Cl- or Ca2+-limiting media, and inactivation of sll1418 did not prevent photoautotrophic growth in normal or nutrient-limiting conditions. Also the wild-type and ΔPsbP strains exhibited similar oxygen evolution and assembly of Photosystem II (PS II) centers. Inactivation of sll1418 in the ΔPsbO: ΔPsbP, ΔPsbQ:ΔPsbP, ΔPsbU:ΔPsbP and ΔPsbV:ΔPsbP mutants did not prevent photoautotrophy or alter PS II assembly and oxygen evolution in these strains. Moreover, the absence of PsbP did not affect the ability of alkaline pH to restore photoautotrophic growth in the ΔPsbO:ΔPsbU strain. The PsbO, PsbU and PsbV proteins are required for thermostability of PS II and thermal acclimation in Synechocystis sp. PCC 6803 [Kimura et al. (2002) Plant Cell Physiol 43: 932–938]. However, thermostability and thermal acclimation in ΔPsbP cells were similar to wild type. These results are consistent with the conclusion that PsbP is associated with ∼3 of PS II centers, and may play a regulatory role in PS II [Thornton et al. (2004) Plant Cell 16: 2164–2175].  相似文献   

19.
The 14kDa (Cry34Ab1) and 44kDa (Cry35Ab1) binary insecticidal proteins are produced naturally by Bacillus thuringiensis PS149B1 as parasporal inclusion bodies. Here, we show production of these two insecticidal proteins in recombinant Pseudomonas fluorescens and their subsequent purification to near homogeneity to provide large quantities of protein for safety-assessment studies associated with the registration of transgenic corn plants. The gene sequence specific for each protein was expressed in P. fluorescens and fermented at the 75-L scale. For Cry34Ab1, the protein accumulated as insoluble inclusion bodies, and was purified by extraction directly from the cell pastes at pH 3.4 with a sodium acetate buffer, selective precipitation at pH 7.0, and differential centrifugation. For Cry35Ab1, the protein was extracted from the purified inclusion bodies with sodium acetate buffer (pH 3.5) containing 0.5M urea, followed by diafiltration. No chromatography steps were required to produce over 30g of lyophilized protein powder with purity greater than 98%, while retaining full insecticidal activity against Western corn rootworm larvae. The proteins were further characterized to assure identity and suitability for use in safety-assessment studies.  相似文献   

20.
Interfering RNA was used to suppress simultaneously the expression of the four genes which encode the PsbO and PsbP proteins of Photosystem II in Arabidopsis (PsbO: At5g66570, At3g50820 and PsbP: At1g06680, At2g30790). A phenotypic series of transgenic plants was obtained that expressed variable amounts of the PsbO proteins and undetectable amounts of the PsbP proteins. Immunological studies indicated that the loss of PsbP expression was correlated with the loss of expression of the PsbQ, D2, and CP47 proteins, while the loss of PsbO expression was correlated with the loss of expression of the D1 and CP43 proteins. Q(A)(-) reoxidation kinetics in the absence of DCMU indicated that the slowing of electron transfer from Q(A)(-) to Q(B) was correlated with the loss of the PsbP protein. Q(A)(-) reoxidation kinetics in the presence of DCMU indicated that charge recombination between Q(A)(-) and donor side components of the photosystem was retarded in all of the mutants. Decreasing amounts of the PsbO protein in the absence of the PsbP component also led to a progressive loss of variable fluorescence yield (F(V)/F(M)). During fluorescence induction, the loss of PsbP was correlated with a more rapid O to J transition and a loss of the J to I transition. These results indicate that the losses of the PsbO and PsbP proteins differentially affect separate protein components and different PS II functions and can do so, apparently, in the same plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号