首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phanerochaete chrysosporium metabolized the radiolabeled lignin model compounds [gamma-C]guaiacylglycerol-beta-guaiacyl ether and [4-methoxy-C]veratrylglycerol-beta-guaiacyl ether (VI) to CO(2) in stationary and in shaking cultures. CO(2) evolution was greater in stationary culture. CO(2) evolution from [gamma-C]guaiacyl-glycerol-beta-guaiacyl ether and [4-methoxy-C]veratrylglycerol-beta-guaiacyl ether in stationary cultures was two- to threefold greater when 100% O(2) rather than air (21% O(2)) was the gas phase above the cultures. CO(2) evolution from the metabolism of the substrates occurred only as the culture entered the stationary phase of growth. The presence of substrate levels of nitrogen in the medium suppressed CO(2) evolution from both substrates in stationary cultures. [C]veratryl alcohol and 4-ethoxy-3-methoxybenzyl alcohol were formed as products of the metabolism of VI and 4-ethoxy-3-methoxyphenylglycerol-beta-guaiacyl ether, respectively.  相似文献   

2.
Analysis of a 2.4-kb cDNA of the cellulose-binding extracellular β-glucosidase (CBGL) from Phanerochaete chrysosporium suggested that CBGL is organized into two domains, an N-terminal cellulose-binding domain and a C-terminal catalytic domain. Genomic sequence analysis suggested that cbgl is encoded by 30 exons. Southern analysis of DNA from homokaryotic cultures indicated that CBGL is encoded by two alleles, cbgl-1 and cbgl-2, of a single gene.  相似文献   

3.
Phanerochaete chrysosporium produces intracellular soluble and particulate β-glucosidases and an extracellular β-glucosidase. The extracellular enzyme is induced by cellulose but repressed in the presence of glucose. The molecular weight of this enzyme is 90,000. The Km for p-nitrophenyl-β-glucoside is 1.6 × 10−4 M; the Ki for glucose, a competitive inhibitor, is 5.0 × 10−4 M. The Km for cellobiose is 5.3 × 10−4 M. The intracellular soluble enzyme is induced by cellobiose; this induction is prevented by cycloheximide. The presence of 300 mM glucose in the medium, however, had no effect on induction. The Km for p-nitrophenyl-β-glucoside is 1.1 × 10−4 M. The molecular weight of this enzyme is ~410,000. Both enzymes have an optimal temperature of 45°C and an Eact of 9.15 kcal (ca. 3.83 × 104 J). The pH optima, however, were ~7.0 and 5.5 for the intracellular and extracellular enzymes, respectively.  相似文献   

4.
Metabolism of cyanide by Phanerochaete chrysosporium   总被引:1,自引:0,他引:1  
The oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) by lignin peroxidase H2 (LiP H2) from the white rot fungus Phanerochaete chrysosporium was strongly inhibited by sodium cyanide. The I50 was estimated to be about 2-3 microM. In contrast, sodium cyanide binds to the native enzyme with an apparent sodium cyanide dissociation constant Kd of about 10 microM. Inhibition of the veratryl alcohol oxidase activity of LiP H2 by cyanide was reversible. Ligninolytic cultures of P. chrysosporium mineralized cyanide at a rate that was proportional to the concentration of cyanide to 2 mM. The N-tert-butyl-alpha-phenylnitrone-cyanyl radical adduct was observed by ESR spin trapping upon incubation of LiP H2 with H2O2 and sodium cyanide. The identity of the spin adduct was confirmed using 13C-labeled cyanide. Six-day-old cultures of the fungus were more tolerant to sodium cyanide toxicity than spores. Toxicity measurements were based on the effect of sodium cyanide on respiration of the fungus as determined by the metabolism of [14C]glucose to [14C]CO2. We propose that this tolerance of the mature fungus was due to its ability to mineralize cyanide and that this fungus might be effective in treating environmental pollution sites contaminated with cyanide.  相似文献   

5.
Previous studies have shown that a lignin-degrading system appears in cultures of the white rot fungus Phanerochaete chrysosporium in response to nitrogen starvation, apparently as part of secondary metabolism. We examined the influence of limiting carbohydrate, sulfur, or phosphorus and the effect of varying the concentrations of four trace metals, Ca, and Mg. Limitation of carbohydrate or sulfur but not limitation of phosphorus triggered ligninolytic activity. When only carbohydrate was limiting, supplementary carbohydrate caused a transient repression of activity. In carbohydrate-limited cultures, ligninolytic activity appeared when the supplied carbohydrate was depleted, and this activity was associated with a decrease in mycelial dry weight. The amount of lignin degraded depended on the amount of carbohydrate provided, which determined the amount of mycelium produced during primary growth. Carbohydrate-limited cultures synthesized only small amounts of the secondary metabolite veratryl alcohol compared with nitrogen-limited cultures. l-Glutamate sharply repressed ligninolytic activity in carbohydrate-starved cultures, but NH(4) did not. Ligninolytic activity was also triggered in cultures supplied with 37 muM sulfur as the only limiting nutrient. The balance of trace metals, Mg, and Ca was important for lignin degradation.  相似文献   

6.
Metabolism of phenanthrene by Phanerochaete chrysosporium.   总被引:9,自引:0,他引:9  
The white rot fungus Phanerochaete chrysosporium metabolized phenanthrene when it was grown for 7 days at 37 degrees C in a medium containing malt extract, D-glucose, D-maltose, yeast extract, and Tween 80. After cultures were grown with [9-14C]phenanthrene, radioactive metabolites were extracted from the medium with ethyl acetate, separated by high-performance liquid chromatography, and detected by liquid scintillation counting. Metabolites from cultures grown with unlabeled phenanthrene were identified as phenanthrene trans-9,10-dihydrodiol, phenanthrene trans-3,4-dihydrodiol, 9-phenanthrol, 3-phenanthrol, 4-phenanthrol, and the novel conjugate 9-phenanthryl beta-D-glucopyranoside. Identification of the compounds was based on their UV absorption, mass, and nuclear magnetic resonance spectra. Since lignin peroxidase was not detected in the culture medium, these results suggest the involvement of monooxygenase and epoxide hydrolase activity in the initial oxidation and hydration of phenanthrene by P. chrysosporium.  相似文献   

7.
Metabolism of phenanthrene by Phanerochaete chrysosporium.   总被引:2,自引:8,他引:2       下载免费PDF全文
The white rot fungus Phanerochaete chrysosporium metabolized phenanthrene when it was grown for 7 days at 37 degrees C in a medium containing malt extract, D-glucose, D-maltose, yeast extract, and Tween 80. After cultures were grown with [9-14C]phenanthrene, radioactive metabolites were extracted from the medium with ethyl acetate, separated by high-performance liquid chromatography, and detected by liquid scintillation counting. Metabolites from cultures grown with unlabeled phenanthrene were identified as phenanthrene trans-9,10-dihydrodiol, phenanthrene trans-3,4-dihydrodiol, 9-phenanthrol, 3-phenanthrol, 4-phenanthrol, and the novel conjugate 9-phenanthryl beta-D-glucopyranoside. Identification of the compounds was based on their UV absorption, mass, and nuclear magnetic resonance spectra. Since lignin peroxidase was not detected in the culture medium, these results suggest the involvement of monooxygenase and epoxide hydrolase activity in the initial oxidation and hydration of phenanthrene by P. chrysosporium.  相似文献   

8.
Methods based on UV-visible diffuse reflectance spectroscopy were used to study the physiological aspects of lignin-peroxidase biosynthesis by Phanerochaete chrysosporium. Here we introduce the use of cytochrome aa3 as an indicator of active fungal biomass and of its redox state to calculate the oxygen mass transport coefficient between the growth medium and the fungal cell interior. When lignin peroxidase biosynthesis was enhanced by the addition of Tween 80 or Tween 20 to the growth medium, a higher proportion of reduced cytochrome aa3 and a higher oxygen diffusion barrier were observed compared with control cultures. In cultures supplemented with Tween 80 or Tween 20, a higher oxygen mass transport coefficient between the growth medium and the interior of the fungal cell was also found. The beginning of the lignin peroxidase activity in these cultures was found to coincide with a temporary cessation in the dry biomass increase and a reduction in the relative active-biomass concentration. During the lignin peroxidase activity, a decrease in the intracellular pH and an increase in the growth medium pH were determined in cultures supplemented with Tween 80.  相似文献   

9.
4-Ethoxy-3-methoxyphenylglycerol-γ-formyl ester (compound IV) was identified as a degradation product of both 4-ethoxy-3-methoxyphenylglycerol-β-syringaldehyde ether (compound I) and 4-ethoxy-3-methoxyphenylglycerol-β-2,6-dimethoxyphenyl ether (compound II) by a ligninolytic culture of Coriolus versicolor. An isotopic experiment with a 13C-labeled compound (compound II′) indicated that the formyl group of compound IV was derived from the β-phenoxyl group of β-O-4 dimer as an aromatic ring cleavage fragment. However, compound IV was not formed from 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether (compound III). γ-Formyl arylglycerol (compound IV) could be a precursor of 4-ethoxy-3-methoxyphenylglycerol (compound VI), because 3-(4-ethoxy-3-methoxyphenyl)-1-formyloxy propane (compound VII) was cleaved to give 3-(4-ethoxy-3-methoxyphenyl)-1-propanol (compound VIII) by C. versicolor. 4-Ethoxy-3-methoxyphenylglycerol-β,γ-cyclic carbonate (compound V), previously found as a degradation product of compound III by Phanerochaete chrysosporium (T. Umezawa, and T. Higuchi, FEBS Lett., 25:123-126, 1985), was also identified from the cultures with compound I, II, and III and degraded to give the arylglycerol (compound VI). An isotopic experiment with 13C-labeled compounds II′ and III′ indicated that the carbonate carbon of compound V was derived from the β-phenoxyl groups of β-O-4 substructure.  相似文献   

10.
The model white-rot basidiomycete Phanerochaete chrysosporium contains a single integral membrane Δ12-desaturase FAD2 related to the endoplasmic reticular plant FAD2 enzymes. The fungal fad2-like gene was cloned and distinguished itself from plant homologs by the presence of four introns and a significantly larger coding region. The coding sequence exhibits ca. 35% sequence identity to plant homologs, with the highest sequence conservation found in the putative catalytic and major structural domains. In vivo activity of the heterologously expressed enzyme favors C18 substrates with ν+3 regioselectivity, where the site of desaturation is three carbons carboxy-distal to the reference position of a preexisting double bond (ν). Linoleate accumulated to levels in excess of 12% of the total fatty acids upon heterologous expression of P. chrysosporium FAD2 in Saccharomyces cerevisiae. In contrast to the behavior of the plant FAD2 enzymes, this oleate desaturase does not 12-hydroxylate lipids and is the first example whose activity increases at higher temperatures (30°C versus 15°C). Thus, while maintaining the hallmark activity of the fatty acyl Δ12-desaturase family, the basidiomycete fad2 genes appear to have evolved substantially from an ancestral desaturase.  相似文献   

11.
The white-rot basidiomycete Phanerochaete chrysosporium metabolized 3-(4′-ethoxy-3′-methoxyphenyl)-2-(4″-methoxyphenyl)propionic acid (V) in low-nitrogen, stationary cultures, conditions under which ligninolytic activity is expressed. The ability of several fungal mutant strains to degrade V reflected their ability to degrade [14C]lignin to 14CO2. 1-(4′-Ethoxy-3′-methoxyphenyl)-2-(4″-methoxyphenyl)-2- hydroxyethane (VII), anisyl alcohol, and 4-ethoxy-3-methoxybenzyl alcohol were isolated as metabolic products, indicating an initial oxidative decarboxylation of V, followed by α, β cleavage of the intermediate (VII). Exogenously added VII was rapidly converted to anisyl alcohol and 4-ethoxy-3-methoxybenzyl alcohol. When the degradation of V was carried out under 18O2, 18O was incorporated into the β position of the diarylethane product (VII), indicating that the reaction is oxygenative.  相似文献   

12.
Phanerochaete chrysosporium produces two classes of extracellular heme proteins, designated lignin peroxidases and manganese peroxidases, that play a key role in lignin degradation. In this study we isolated and characterized a lignin peroxidase-negative mutant (lip mutant) that showed 16% of the ligninolytic activity (14C-labeled synthetic lignin----14CO2) exhibited by the wild type. The lip mutant did not produce detectable levels of lignin peroxidase, whereas the wild type, under identical conditions, produced 96 U of lignin peroxidase per liter. Both the wild type and the mutant produced comparable levels of manganese peroxidase and glucose oxidase, a key H2O2-generating secondary metabolic enzyme in P. chrysosporium. Fast protein liquid chromatographic analysis of the concentrated extracellular fluid of the lip mutant confirmed that it produced only heme proteins with manganese peroxidase activity but no detectable lignin peroxidase activity, whereas both lignin peroxidase and manganese peroxidase activities were produced by the wild type. The lip mutant appears to be a regulatory mutant that is defective in the production of all the lignin peroxidases.  相似文献   

13.
The glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter was used to drive expression of lip2, the gene encoding lignin peroxidase (LiP) isozyme H8, in primary metabolic cultures of Phanerochaete chrysosporium. The expression vector, pUGL, also contained the Schizophyllum commune ura1 gene as a selectable marker. pUGL was used to transform a P. chrysosporium Ura11 auxotroph to prototrophy. Ura+ transformants were screened for peroxidase activity in liquid cultures containing high-carbon and high-nitrogen medium. Recombinant LiP (rLiP) was secreted in active form by the transformants after 4 days of growth, whereas endogenous lip genes were not expressed under these conditions. Approximately 2 mg of homogeneous rLiP/liter was obtained after purification. The molecular mass, pI, and optical absorption spectrum of rLiPH8 were essentially identical to those of the wild-type LiPh8 (wt LiPH8), indicating that heme insertion, folding, and secretion functioned normally in the transformant. Steady-state and transient-state kinetic properties for the oxidation of veratryl alcohol between wtLiPH8 and rLiPH8 were also identical.  相似文献   

14.
15.
16.
There are two temperature optima connected with lignin peroxidase synthesis by Phanerochaete chrysosporium INA-12. One, at 37°C, is for the mycelium-growing phase; the other, at 30°C, is for the lignin peroxidase-producing phase. One of six extracellular proteins with ligninase activity increased when cultures were grown at 30°C for the entire fermentation period or when cultures were grown at 37°C for the first 2 days of incubation and then shifted to 30°C, compared with the activity of control cultures grown at 37°C for the entire fermentation period. The unsaturation of fatty acid (Δ/mole) of P. chrysosporium INA-12 mycelium decreased from 1.25 to 1.03 when the growth temperature was shifted from 20 to 40°C.  相似文献   

17.
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability.  相似文献   

18.
Eleven different bacteria, isolated by enrichment procedures on alpha-aminoisobutyric (AIB) as sole fixed nitrogen source, were examined for the mechanism by which they attacked the amino acid. All eleven organisms, including one which grew well on isopropylamine, converted AIB to acetone and CO(2) and showed an absolute dependence upon pyruvate for this reaction. No organism isolated degraded AIB to isopropylamine as the primary reaction. The data suggested that the usual mode of attack upon this amino acid is by an overall reaction comprised of two half reactions, one a decarboxylation-dependent transamination and the other a normal exchange transamination.  相似文献   

19.
Aspergillus niger JTS 191 was selected from many microorganisms tested as capable of converting ionones to other compounds having aromas. The individual transformation products from β-ionone were isolated and identified by comparison with synthetically derived compounds. The major products were (R)-4-hydroxy-β-ionone and (S)-2-hydroxy-β-ionone. 2-Oxo-, 4-oxo-, 3,4-dehydro-, 2,3-dehydro-4-oxo-, 3,4-dehydro-2-oxo-, (S)-2-acetoxy-, (R)-4-acetoxy-, and 5,6-epoxy-β-ionone and 4-(2,3,6-trimethylphenyl)-but-3-en-2-one were also identified. Analogous transformation products of β-methylionone also were identified. Based on gas-liquid chromatographic analysis during the fermentation, we propose two main oxidative pathways of β-ionone. The results of this study suggest that these transformations of β-ionones may be useful as tobacco-flavoring compounds.  相似文献   

20.
The penetration of enzymes into wood cell walls during white rot decay is an open question. A postembedding immunoelectron microscopic technique was the method of choice to answer that question. Infiltration of pine wood specimens with a concentrated culture filtrate greatly improved the labeling density and, thereby, reproducibility. Characterization of the concentrated culture filtrate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting (immunoblotting) revealed three closely spaced proteins of molecular weights about 42,000 showing immunoreactivity against anti-lignin peroxidase serum. It was shown by immunogold labeling that lignin peroxidase of Phanerochaete chrysosporium is located on the surface of the wood cell wall or within areas of heavy attack. It did not diffuse into undecayed parts of the cell wall. The reasons for preventing lignin peroxidase from penetrating wood cell walls during white rot decay are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号