首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole cells or cell-free extracts of Aerobacter aerogenes catalyze the degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in vitro to at least seven metabolites: 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE); 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD); 1-chloro-2,2-bis(p-chlorophenyl)ethylene (DDMU); 1-chloro-2,2-bis(p-chlorophenyl)ethane (DDMS); unsym-bis(p-chlorophenyl)ethylene (DDNU); 2,2-bis(p-chlorophenyl)acetate (DDA); and 4,4'-dichlorobenzophenone (DBP). The use of metabolic inhibitors together with pH and temperature studies indicated that discrete enzymes are involved. By use of the technique of sequential analysis, the metabolic pathway was shown to be: DDT --> DDD -->DDMU -->DDMS --> DDNU --> DDA --> DBP, or DDT --> DDE. Dechlorination was marginally enhanced by light-activated flavin mononucleotide.  相似文献   

2.
The effects of the pyrethroids fucythrinate, cyfluthrin, bioallethrin and resmethrin on metabolic cooperation between V79 cells were investigated. Addition offucythrinate to cocultures of 6-thioguanine-resistant and 6-thioguanine-sensitive V79 cells significantly increased the mutant cell recovery, indicating inhibition of intercellular communication. No such effect was observed by the other pyrethroids tested. To compare the modes of action of TPA-, DDT-, and pyrethroid-induced inhibition of intercellular communication, co-exposure experiments were undertaken. Addition of TPA, together with increasing doses of fenvalerate or fucythrinate, produced a synergistic response. Various combinations of fenvalerate-, fucythrinate- and DDT-exposure gave results in accordance with an additive response. The result suggest different pathways of action for TPA and the insecticides investigated in this study.Abbreviations DDT 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane - DMSO dimethyl sulfoxide - 6-TG 6thioguanine - TPA 12-0-tetradecanoyl phorbol-13-acetate  相似文献   

3.
The effects of dietary 0.2% inositol stereoisomers on the hepatic lipids and myo-inositol (MI) status in rats fed with 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT) were investigated. Dietary MI reduced the hepatic lipids in the rats fed with DDT. Dietary D-chiro-inositol (DCI) and L-chiro-inositol (LCI) both had a promoting effect on the increase in hepatic lipids due to DDT feeding. Dietary MI enhanced the hepatic free MI level and the phosphatidylinositol/phosphatidylcholine ratio, but dietary DCI reduced the level and ratio.  相似文献   

4.
Male and female chickens of a broiler-type strain were fed, from 1 day old to 5 weeks of age, diets containing 0, 2.5, or 15.0 p.p.m. (mg/kg) 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p'-DDT). Then the diets with pesticide were withdrawn and the chickens were fed dietary levels of diphenylhydantoin (DPH) at 0, 100, or 250 p.p.m. Adipose-tissue and liver samples were obtained on days 0, 10, 20, and 30 following withdrawal of diets with pesticides to determine DPH effect on DDT, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD) levels. DPH had no effect on the concentration of DDT and DDE in adipose tissue; their levels declined at a rate having a half-life value of 16 days. DDD was not detected in adipose tissue. DDT accounted for 87% of the adipose residues on day 0, but 66% of the residues at day 30. DPH had no effect on the concentrations of DDT and DDE in livers of chickens fed 15.0 p.p.m. DDT, but did significantly reduce the levels of DDD by 28 and 54% for levels of 100 and 250 p.p.m. DPH, respectively. The similarity of these data to studies on dairy cows and humans, and the dissimilarity to data from rat studies were discussed.  相似文献   

5.
The thyroid-stimulating hormone (TSH) receptor (TSHr) was made specifically fluorescent by insertion of a tetracysteine motif (TSHr-FlAsH) into the C-terminal end and transiently transfected into COS-7 and HeLa cells. The observation that TSH administration caused the intracellular level of cAMP to increase in both TSHr-FlAsH-transfected cell types indicated that the FlAsH binding motif did not alter normal TSHr functioning. When transfected into HeLa cells and stimulated with TSH, the TSHr-FlAsH receptor exhibited a pronounced perinuclear labelling pattern, whereas labelling remained on the cell surface following pre-incubation with 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT). Chinese hamster ovary (CHO)-TSHr cells probed with anti-TSHr antibodies were fluorescent mainly in the proximity of the plasma membrane, with fluorescence being primarily restricted to a juxta-nuclear position when exposed to 10 mU/ml TSH for 1 or 5 min. However, in the presence of DDT, the anti-TSHr fluorescence maintained a peripheral location along the cell plasma membrane, even if CHO-TSHr cells were stimulated with TSH for 1 and 5 min. To verify that DDT acted specifically on the TSHr, CHO cells transfected with the A2a receptor were used as controls. Following a 1-min stimulation with 5’-(N-ethyl-carboxamido)-adenosine, A2a receptors were gradually internalized regardless of the presence of DDT in the culture medium. Finally, immunoelectron microscopy of CHO-TSHr cells showed that a 1-min exposure to TSH sufficed to displace anti-TSHr antibodies tagged with 10-nm gold particles into coated pits and vesicles but that their superficial location was retained along the plasma membrane in the presence of DDT.  相似文献   

6.
Using a novel in vitro technique, whereby microsomal enzymes were embedded in an agar layer to prolong their viability, 1,1-bis(p-chlorophenyl) ethylene(DDNU), a mammalian metabolite of 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), was converted by microsomal mono-oxygenases of mouse liver into 1,1-bis(p-chlorophenyl)-1,2-ethanediol (DDNU-diol). The putative epoxide intermediate, 1,1-bis(p-chlorophenyl)ethylene oxide (DDNU-oxide), a new compound, was synthesized; it showed weak alkylating activity with 4-(4-nitrobenzyl)pyridine but was not mutagenic in Salmonella typhimurium strains TA100 and TA98. DDT and 13 of its metabolites or putative synthetic derivatives, including 1,1-bis(p-chlorophenyl)-2,2-dichloroethylene (DDE), 1 1,1-bis(p-chlorophenyl)-2-chloroethylene (DDMU), 1,1-bis(p-chlorophenyl)-2-chloroethane (DDMS)-DDNU, 2,2-bis(p-chlorophenyl)ethanol (DDOH), bis(p-chlorophenyl)acetic acid (DDA) and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethanol (Kethane), caused no mutagenic effects in S. typhimurium strains TA100 or TA98, either in the presence or absence of a mouse-liver microsomal fraction. 1,1-Bis(p-chlorophenyl)-2,2,2-trichloroethyl acetate (Kelthane acetate) was a direct-acting mutagen in strain TA100, whereas 1,1-bis(p-chlorophenyl)-2,2-dichloroethane (DDD) was mutagenic in TA98, only in the presence of a mouse-liver microsomal system. The results are discussed in relation to possible pathways whereby DDT is activated to mutagenic and/or carcinogenic metabolites.  相似文献   

7.
Cladosporium sp. strain AJR318,501 was isolated from DDT-contaminated soil by its ability to decolourise the polymeric dye, Poly R-478. When inoculated into potato/dextrose broth containing 100 mg of DDT l–1, a 21% decrease in DDT concentration was observed 12 days after its addition, however, no transformation products were detected by gas chromatography. TLC of culture medium and mycelia extracts revealed 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane and five unknown transformation products associated with the mycelia.  相似文献   

8.
The effects of dietary 0.2% inositol stereoisomers on the hepatic lipids and myo-inositol (MI) status in rats fed with 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane (DDT) were investigated. Dietary MI reduced the hepatic lipids in the rats fed with DDT. Dietary D-chiro-inositol (DCI) and L-chiro-inositol (LCI) both had a promoting effect on the increase in hepatic lipids due to DDT feeding. Dietary MI enhanced the hepatic free MI level and the phosphatidylinositol/phosphatidylcholine ratio, but dietary DCI reduced the level and ratio.  相似文献   

9.
Homogenates of liver were obtained from control rats and from rats that had received DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane]. The postmicrosomal supernatant fractions were used for the purification of elongation factor 1 by hydroxyapatite chromatography and phosphocellulose chromarography. The amount of binding factor present was essentially the same for both groups of animals, but the specific activity, as measured by the binding assay, was about twice as high in the DDT-treated preparations. After sucrose-gradient sedimentation, the difference in specific activity was found to reside in the low-molecular-weight (50000) form of elongation factor 1. The implications of an increased reactivity of elongation factor 1 during the induction of membrane enzymes are discussed.  相似文献   

10.
Effects of Pesticides on Nitrite Oxidation by Nitrobacter agilis   总被引:2,自引:2,他引:0       下载免费PDF全文
The influence of pesticides on the growth of Nitrobacter agilis in aerated cultures and on the respiration of N. agilis cell suspensions and cell-free extracts was studied. Two pesticides, aldrin and simazine, were not inhibitory to growth of Nitrobacter, but five compounds [isopropyl N-(3-chlorophenyl) carbamate (CIPC), chlordane, 1,1-dichloro-2,2-bis (p-chlorophenyl) ethane (DDD), heptachlor, and lindane] prevented growth when added to the medium at a concentration of 10 mug/ml. Whereas CIPC and eptam prevented nitrite oxidation by cell suspensions, the addition of DDD and lindane resulted in only partial inhibition of the oxidation. Heptachlor and chlordane also caused only partial inhibition of oxidation, but were more toxic with cell-free extract nitrite oxidase. None of the pesticides inhibited the nitrate reductase activity of cell-free extracts, but most caused some repression of cytochrome c oxidase activity. Heptachlor was the most deleterious compound.  相似文献   

11.
Cometabolism of DDT analogs by a Pseudomonas sp.   总被引:2,自引:1,他引:1       下载免费PDF全文
A Pseudomonas sp. capable of growth on several nonchlorinated and mono-p-chloro-substituted analogs of DDT as a sole carbon source degraded bis(p-chlorophenyl)methane and 1,1-bis(p-chlorophenyl)ethane only in the presence of diphenylethane. The products p-chlorophenylacetic acid and 2-(p-chlorophenyl)-propionic acid were not further metabolized by the bacterium. Other chlorinated analogs of DDT were found to be recalcitrant to cometabolic degradation with diphenylethane.  相似文献   

12.
A Pseudomonas sp. capable of growth on several nonchlorinated and mono-p-chloro-substituted analogs of DDT as a sole carbon source degraded bis(p-chlorophenyl)methane and 1,1-bis(p-chlorophenyl)ethane only in the presence of diphenylethane. The products p-chlorophenylacetic acid and 2-(p-chlorophenyl)-propionic acid were not further metabolized by the bacterium. Other chlorinated analogs of DDT were found to be recalcitrant to cometabolic degradation with diphenylethane.  相似文献   

13.
Cell death in a resting population of an asporogenous Bacillus megaterium was accelerated by ambient concentrations of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) equal to or greater than 10 mug/ml or 5 mug/mg of cells (dry weight), but only after prolonged exposure. Conversely, populations of growing cells were not markedly influenced even at 100 mug/ml. Effects on cell respiration were not manifest until the ambient concentration reached 1,000 mug of 2,4,5-T/ml, or 500 mug/mg. Cells of B. megaterium did, however, accumulate 2,4,5-T passively to a level approximately twofold above the ambient concentration. Most of the accumulated compound was easily washed from the cells, but, of the firmly bound herbicide, about 0.5 mug/mg of cells (dry weight), nearly 60% by weight, was localized in the protoplast membrane. The foregoing results, obtained with a purified preparation of 2,4,5-T were also elicited by 2,4,5-T analytical standards. The extracted contaminants did not produce the results alone nor did they influence the results when present in combination with 2,4,5-T.  相似文献   

14.
The mutagenic and cytogenetic effects of the chlorinated hydrocarbon 1,11-trichloro-2,2-bis(p-chlorophenyl)ethane] (DDT), and its metabolite [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene] (DDE) were investigated in vitro using a Chinese hamster cell line. A forward mutation system utilizing the 8-azaguanine sensitive to 8-azaguanine resistant marker was used as the index of mutagenic action. Methyl methanesulfonate (MMS) was used as the positive control. In all experiments, DDE consistently produced a significant increase in the mutation frequency over the control level, while DDT proved inactive.Resultsof the cytogenetic studies indicated that DDE-treated cells had a significant increase in chromosome aberrations over those occuring in the control population; exchange figures and chromatid breaks wre evident. DDT produced no significant increase in chromosome abnormalities. The Chinese hamster cell populations exposed to DDE also manifested an increased number of polyploid cells over the control level.  相似文献   

15.
The goal of this study was to determine the efficacy of ultrasonication extraction of 1,1,1-trichloro-2,2-bis[p-chlorophenyl]ethane (DDT), 1,1-dichloro-2,2-bis[p-chlorophenyl]ethane (DDD), and 2,2-bis[p-chlorophenyl]1,1-dichloro-ethylene (DDE) residues in soil for the purposes of saving time, minimizing generation of hazardous solvent wastes, and reducing costs associated with monitoring contaminant concentrations at remediation sites. An ultrasonic extraction method was developed for DDT, DDD, and DDE residues in soil, and the efficiency of extraction using an ultrasonic cavitator was compared to the traditional soxhlet method by GC-MS. Un-contaminated soil was spiked with analytes DDT, DDD, and DDE at 0.1,1.0,10.0, and 100.0?mg/ kg. Experiments were performed in triplicate, and recoveries of analytes were determined and statistically compared. Results indicate that ultrasonic extraction is a suitable preparatory method for analysis of DDT, DDD, and DDE residues in soil. For spike concentrations of 1?mg/kg to 100?mg/kg, ultrasonication extraction resulted in recoveries in excess of 80% in all but one case. Most recoveries obtained by ultrasonication extraction were statistically indistinguishable from or slightly lower than recoveries obtained by soxhlet extraction. In addition, the lower temperatures employed in ultrasonication extraction may have reduced the amount of thermal degradation of DDT to DDE, a phenomenon that could occur during soxhlet extraction.  相似文献   

16.
Interaction of insecticides with lipid membranes.   总被引:10,自引:0,他引:10  
The permeability of liposome membranes is increased by organophosphorus and organochlorinated insecticides at concentrations of 10(-5)--10(-4) M. The order of effectiveness is similar to the toxicity of the compounds to mammals, and is the following for permeation of non-electrolytes and for valinomycin-induced permeation of K+: parathion greater than 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) approximately aldrin greater than malathion greater than lindane. The degree of effectiveness for X-537A-induced permeation of Ca2+ was the following: aldrin greater than or equal to DDT greater than parathion greater than malathion greater than lindane. The organophosphorus compound, ethyl azinphos (10(-4) M), dramatically increases the permeability of liposome membranes to all the tested substances, probably as a consequence of surfactant effects. Some organochlorinated insecticides appear to react with cation ionophores and modulate their motion across lipid membranes. It is suggested that the insecticides may exert some of their toxic actions by modifying certain mechanisms in the cell membrane.  相似文献   

17.
Suhara H  Adachi A  Kamei I  Maekawa N 《Biodegradation》2011,22(6):1075-1086
One hundred and two basidiomycete strains (93 species in 41 genera) that prefer a soil environment were examined for screening of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) biodegradation. Three strains within two litter-decomposing genera, Agrocybe and Marasmiellus, were selected for their DDT biotransformation capacity. Eight metabolites; 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), two monohydroxy-DDTs, monohydroxy-DDD, 2,2-dichloro-1,1-bis(4-chlorophenyl)ethanol, putative 2,2-bis(4-chlorophenyl)ethanol and two unidentified compounds were detected from the culture with Marasmiellus sp. TUFC10101. A P450 inhibitor, 1-ABT, inhibited the formation of monohydroxy-DDTs and monohydroxy-DDD from DDT and DDD, respectively. These results indicated that oxidative pathway which was catalyzed by P450 monooxygenase exist beside reductive dechlorination of DDT. Monohydroxylation of the aromatic rings of DDT (and DDD) by fungal P450 is reported here for the first time.  相似文献   

18.
Extensive biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of [14C]DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the formation of polar and water-soluble metabolites during degradation. Hexane-extractable metabolites identified by gas chromatography-mass spectrometry included 1,1,-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol (dicofol), 2,2-dichloro-1,1-bis(4-chlorophenyl)ethanol (FW-152), and 4,4'-dichlorobenzophenone (DBP). DDD was the first metabolite observed; it appeared after 3 days of incubation and disappeared from culture upon continued incubation. This, as well as the fact that [14C]dicofol was mineralized, demonstrates that intermediates formed during DDT degradation are also metabolized. These results demonstrate that the pathway for DDT degradation in P. chrysosporium is clearly different from the major pathway proposed for microbial or environmental degradation of DDT. Like P. chrysosporium ME-446 and BKM-F-1767, the white rot fungi Pleurotus ostreatus, Phellinus weirii, and Polyporus versicolor also mineralized DDT.  相似文献   

19.
Extensive biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of [14C]DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the formation of polar and water-soluble metabolites during degradation. Hexane-extractable metabolites identified by gas chromatography-mass spectrometry included 1,1,-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol (dicofol), 2,2-dichloro-1,1-bis(4-chlorophenyl)ethanol (FW-152), and 4,4'-dichlorobenzophenone (DBP). DDD was the first metabolite observed; it appeared after 3 days of incubation and disappeared from culture upon continued incubation. This, as well as the fact that [14C]dicofol was mineralized, demonstrates that intermediates formed during DDT degradation are also metabolized. These results demonstrate that the pathway for DDT degradation in P. chrysosporium is clearly different from the major pathway proposed for microbial or environmental degradation of DDT. Like P. chrysosporium ME-446 and BKM-F-1767, the white rot fungi Pleurotus ostreatus, Phellinus weirii, and Polyporus versicolor also mineralized DDT.  相似文献   

20.
Resting cells of bacteria grown in the presence of diphenylmethane oxidized substituted analogs such as 4-hydroxydiphenylmethane, bis(4-hydroxyphenyl)methane, bis(4-chlorophenyl)methane (DDM), benzhydrol, and 4,4'-dichlorobenzhydrol. Resting cells of bacteria grown with benzhydrol as the sole carbon source oxidized substituted benzhydrols such as 4-chlorobenzhydrol, 4,4'-dichlorobenzhydrol, and other metabolites of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), such as DDM and bis(4-chlorophenyl)acetic acid. Bacteria and fungi converted 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane, DDM, 4,4'-dichlorobenzhydrol, and 4,4'-dichlorobenzophenone. Aspergillus conicus converted 55% of bis(4-chlorophenyl)acetic acid to unidentified or unextractable water-soluble products. Aspergillus niger and Penicillium brefeldianum converted 12.4 and 24.6%, respectively, of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to water-soluble and unidentified products. 4-Chlorophenylacetic acid, a product of ring cleavage, was formed from DDM by a false smut fungus of rice. A. niger converted 4,4'-dichlorobenzophenone to 4-chlorobenzophenone and a methylated 4-chlorobenzophenone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号