首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steroid sulfatase (STS) activity was studied in Long-Evans rat testis. The affinity of the enzyme was shown to increase during postnatal development and to be always higher in purified Leydig cells than in seminiferous tubules. STS activity appeared to be higher in the seminiferous tubules at the earlier stages. In vivo injection of 100 IU hCG resulted in a decrease in the affinity and an increase in the activity of the enzyme expressed in Leydig cells with no such modification in seminiferous tubules. This suggests that STS could play a regulatory role in testosterone production by Leydig cells.  相似文献   

2.
Steroid sulfatase (STS) activity was studied in scrotal and abdominal testes from genetically unilateral cryptorchid rats. Specific STS activity was significantly increased in microsomes from abdominal and scrotal testes of the cryptorchid animals as compared to that of control ones. When expressed per gonad, STS activity was only enhanced in the scrotal testis. No difference in the enzyme affinity was observed between descended and undescended testes. Testosterone content was markedly reduced in the abdominal testes. Normal plasma testosterone levels together with elevated LH levels were measured in the cryptorchid rats. The existence of differences in STS expression between descended and undescended testes gives additional support for this enzymatic activity being implicated in testicular function.  相似文献   

3.
An assay system that measures the enzymatic activities (17 alpha-hydroxylase, 17,20-desmolase, and 17 beta-hydroxysteroid dehydrogenase) in the delta 4 pathway of testosterone biosynthesis using rat and human testicular homogenate was examined. This system involves the simultaneous separation of the steroid intermediates by a three-step TLC procedure. The observed Rf values were 0.78 for progesterone (P), 0.59 for 17 alpha-hydroxyprogesterone (17 alpha-HP), 0.70 for androstenedione (A), 0.5 for testosterone, 0.64 for dihydrotestosterone, and 0.45 for 3 alpha, 17 beta-androstanediol. The identification of these steroid intermediates was further accomplished by acetylation and rechromatography of the representative samples along with the authentic standards and by recrystallization to constant specific activity until three consecutive crystallizations were within +/- 5% of the mean value. Incubation time up to 30 min and increasing protein concentrations showed a linear relationship with respect to these three enzymatic activities. The optimum temperature for these enzymatic activities varied from 32 to 34 degrees C, with a sharp decline between 37 and 40 degrees C. The Michaelis constants (Km) for the rat testis homogenate samples were 0.17 microM for P, 0.22 microM for 17 alpha-HP, and 2.5 microM for A, while for the human testis the Km values were 1.2, 2.2, and 2.3 microM, respectively, for these substrates. The concentrations of the endogenous steroid substrates present in these homogenate samples did not alter the Km or Vmax values. The effect of human chorionic gonadotropin (hCG) in vitro on these steroidogenic enzyme activities was also studied. In the rat testis, 10 IU of hCG produced a significant rise in all the three enzyme activities whereas in the human testis 10 and 30 IU of hCG showed no significant change in any of these enzymatic activities. However, 100 IU of hCG resulted in a significant increase in 17 alpha-hydroxylase and 17,20-desmolase activities in the human testis. These studies suggest that this assay system for the measurement of these enzymatic activities using a testicular homogenate sample provides consistent and reproducible results. Based on the sensitivities of the measurements and our experience with testicular biopsy technique, we conclude that a routine testicular biopsy in the human should provide sufficient tissue to run these enzymatic assays.  相似文献   

4.
D-Aspartic acid (D-Asp) and nitric oxide (NO) are two biologically active molecules playing important functions as neurotransmitters and neuromodulators of nerve impulse and as regulators of hormone production by endocrine organs. We studied the occurrence of D-Asp and NO as well as their effects on testosterone synthesis in the testis of boar. This model was chosen for our investigations because it contains more Leydig cells than other mammals. Indirect immunofluorescence applied to cryostat sections was used to evaluate the co-localization of D-Asp and of the enzyme nitric oxide synthase (NOS) in the same Leydig cells. D-Asp and NOS often co-existed in the same Leydig cells and were found, separately, in many other testicular cytotypes. D-Asp level was dosed by an enzymatic method performed on boar testis extracts and was 40+/-3.6 nmol/g of fresh tissue. NO measurement was carried out using a biochemical method by NOS activity determination and expressed as quantity of nitrites produced: it was 155.25+/-21.9 nmol/mg of tissue. The effects of the two molecules on steroid hormone production were evaluated by incubating testis homogenates, respectively with or without D-Asp and/or the NO-donor L-arginine (L-Arg). After incubation, the testosterone presence was measured by immunoenzymatic assay (EIA). These in vitro experiments showed that the addition of D-Asp to incubated testicular homogenates significantly increased testosterone concentration, whereas the addition of L-Arg decreased the hormone production. Moreover, the inclusion of L-Arg to an incubation medium of testicular homogenates with added D-Asp, completely inhibited the stimulating effects of this enantiomer. Our results suggest an autocrine action of both D-Asp and NO on the steroidogenetic activity of the Leydig cell.  相似文献   

5.
The temporal changes in testicular binding of 125I-labelled hCG in juvenile bank voles (18 days of age, born and reared in a 18L:6D photoperiod) exposed to a long (18L:6D, Group L) or short (6L:18D, Group S) photoperiod for 0, 3, 7, 14 and 42-56 days were investigated. During testicular maturation, in Group L, there was a slight initial decrease in LH receptor numbers per testis followed by a marked prepubertal rise during the initial phase of rapid testicular growth after which a decrease took place. In Group S, during testicular regression, the temporal changes in LH receptor numbers per testis resembled those of Group L except that the corresponding increase in hCG binding during the initial week was considerably less marked and the receptor numbers remained thereafter at a significantly lower level than in Group L. Leydig cell count indicated that the observed changes in LH receptors per testis were due to changes in the number of Leydig cells as well as in LH receptors per Leydig cell. The present results indicate, that (1) photoperiod is an important modulator of testicular LH receptor numbers in this species, (2) photoperiod or age has no significant effect on the binding affinity of LH receptors, (3) short photoperiods arrest the induction of LH receptors as well as the increase in Leydig cell numbers associated with normal testicular maturation, and (4) changes in LH receptor numbers per testis correlate well with the photoperiod-induced changes in androgen biosynthesis, spermatogenesis and Leydig cell morphology observed in our previous studies.  相似文献   

6.
11β-hydroxysteroid dehydrogenase (HSD11B) catalyzes the interconversion between active and inactive glucocorticoid, and is known to exist as two distinct isozymes: HSD11B1 and HSD11B2. A third HSD11B isozyme, HSD11B1L (SCDR10b), has recently been identified. Human HSD11B1L, which was characterized as a unidirectional NADP+-dependent cortisol dehydrogenase, appears to be specifically expressed in the brain. We previously reported that HSD11B1 and abundant HSD11B2 isozymes are expressed in neonatal pig testis and the Km for cortisol of NADP+-dependent dehydrogenase activity of testicular microsomes obviously differs from the same activity catalyzed by HSD11B1 from pig liver microsomes. Therefore, we hypothesized that the neonatal pig testis also expresses the third type of HSD11B isozyme, and we herein examined further evidence regarding the expression of HSD11B1L. (1) The inhibitory effects of gossypol and glycyrrhetinic acid on pig testicular microsomal NADP+-dependent cortisol dehydrogenase activity was clearly different from that of pig liver microsomes. (2) A highly conserved human HSD11B1L sequence was observed by RT-PCR in a pig testicular cDNA library. (3) mRNA, which contains the amplified sequence, was evaluated by real-time PCR and was most strongly expressed in pig brain, and at almost the same levels in the kidney as in the testis, but at lower levels in the liver. Based on these results, neonatal pig testis appears to express glycyrrhetinic acid-resistant HSD11B1L as a third HSD11B isozyme, and it may play a physiologically important role in cooperation with the abundantly expressed HSD11B2 isozyme in order to prevent Leydig cell apoptosis or GC-mediated suppression of testosterone production induced by high concentrations of activated GC in neonatal pig testis.  相似文献   

7.
Some of the critical steps in the qualitative histochemical localization of glucose-6-phosphate dehydrogenase (freezing procedures, incubation techniques and the influence of intermediate electron carriers, respiratory chain inhibitors and different tetrazolium salts) were evaluated in sections of bovine testis as a prerequisite for the microdensitometric estimation of the activity of the enzyme in bovine Leydig cells in situ. A modification of the gel incubation method of Rieder et al. (1978) gave the best results and was used for the quantitative investigations. Quantitative data for the dehydrogenase activity gained from microdensitometry of the formazan final reaction products in Leydig cells in situ were compared with the results of assays of the activity in homogenates of testis. The following apparent kinetic properties of glucose-6-phosphate dehydrogenase were obtained for the enzyme in Leydig cells in situ: Vmax = 0.11 absorbance units/min, Km = 0.37 mM. The quantitative characterization of glucose-6-phosphate activity in Leydig cells in situ appears to be suitable for combined morphological and functional diagnoses of small tissue samples such as testicular biopsies. This would give valuable information of the functional status of Leydig cells in normal and diseased testicular tissue.  相似文献   

8.
To define the nature of the lesion of the early steroidogenic pathway (prior to pregnenolone formation) in gonadotropin-induced desensitization of rat testicular Leydig cells, we evaluated cholesterol side-chain cleavage activity in isolated mitochondria by measurement of pregnenolone synthesis and [14C]isocaproic acid formation from [26-14C]cholesterol. The enzyme activity was shown to be reduced after in vivo treatment with 10 micrograms hCG when compared to that of mitochondria from control animals only when measured in the presence of limiting NADPH concentrations (100 microM). Sonication of mitochondria from control and hCG-treated rats caused complete loss of cholesterol side-chain cleavage activity. When acetone-powdered adrenal cell mitochondria were employed as the source of the enzyme, the addition of sonicated Leydig cell mitochondria from control and hCG-treated animals caused the same differences as those observed with intact Leydig cell mitochondria in the presence of low concentration of NADPH. The Km value of the adrenal enzyme for NADPH incubated with Leydig cell mitochondria increased from 0.111 mM in control to 0.37 mM after hCG, with no changes in Vmax. Moreover, cholesterol side-chain cleavage activity of adrenal mitochondria assayed in the presence of 100 microM cholesterol was progressively inhibited by increasing amounts of acetone powder from Leydig cell mitochondria of control and hCG-treated rats, with ID50 of 500 and 280 micrograms protein, respectively. The inhibiting factor was not a lipid or steroid but a heat-labile protein, with an approximate Stokes radius of 4.8 nm and an isoelectric point of 5.05 +/- 0.23 SD (n = 8). The inhibitory effect was confined to the Leydig cell mitochondrial membrane, and was not related to changes in oxidative phosphorylation. NADPH was not directly oxidized or immobilized by the mitochondrial factor, and this inhibiting substance was not adsorbed on 2',5' ADP-Sepharose 4B. These results have demonstrated that a heat-labile inhibiting protein factor is present in mitochondria from normal Leydig cells and is markedly activated or increased by hCG treatment. This substance that competitively modulates cholesterol side-chain cleavage activity could contribute to the early steroidogenic lesion, and also serve as an endogenous modulator of steroid hormone biosynthesis.  相似文献   

9.
The calcium-dependent, energy-independent incorporations of 14C-labeled bases, choline, ethanolamine, and serine, into their corresponding membrane phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, were compared in microsomes and in subcellular fractions prepared from a lysed crude mitochondrial (P2) pellet of whole rat brain. When activities were measured in the presence of an extracellular (1.25 mM) concentration of Ca2+, recovered activities were highest in the microsomal fraction, although substantial activity remained associated with the P2 homogenate even after repeated washing of the pellet. When this washed P2 homogenate was subfractionated, enrichment of all three exchange activities was obtained only in a fraction that was fivefold enriched over the homogenate and sevenfold enriched over the microsomal fraction in Na+, K+-ATPase, a plasma membrane marker. This strongly suggests that the base-exchange enzymes are normal constituents of synaptosomal plasma membranes. The three exchange activities were measured in synaptosomes prepared from whole rat brain in the presence of various substrate (base) concentrations, and kinetic constants were calculated. The Vmax values for choline, ethanolamine, and serine exchange were, respectively, 1.27 +/- 0.09, 1.60 +/- 0.17, and 0.56 +/- 0.06 nmol/mg of protein/h; the respective Km (apparent) values were 241 +/- 29, 65 +/- 18, and 77 +/- 22 microM. Endogenous levels of the three bases, choline, ethanolamine, and serine, in whole (microwaved) rat brains were 20 +/- 8, 78 +/- 28, and 639 +/- 106 nmol, respectively. That ethanolamine and serine incorporations had lower Km values than choline incorporation suggests that these bases are preferentially incorporated into their respective phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The C21 side-chain cleavage enzymes from porcine adrenal and testicular microsomes have been purified and shown to resemble each other very closely (Nakajin, S., Shinoda, M., Hanui, M., Shively, J.E., and Hall, P.F. (1984) J. Biol. Chem. 259, 3971-3976). We have investigated the reason for the low levels of lyase activity shown by adrenal microsomes as compared to testicular microsomes. Competition for substrate with 21-hydroxylase in adrenal microsomes was excluded by studies showing that antibodies to 21-hydroxylase do not increase lyase activity in spite of almost complete inhibition of 21-hydroxylation. Reconstitution of the purified testicular enzyme in lipids extracted from adrenal and testicular microsomes excluded a specific effect of lipids on lyase activity. On the other hand, addition of porcine hepatic P-450 reductase to microsomes from adrenal and testis increased the activity of lyase relative to hydroxylase. The same effect is seen when reductase is added to the pure enzymes. As the concentration of reductase increases, lyase activity increases relative to hydroxylase until the rates of the activities become almost equal. Vmax is the same for both activities (hydroxylase and lyase) of the two enzymes (6.3-6.5 nmol/min/nmol of P-450). Km for reductase is approximately the same for the hydroxylase activities (0.4-0.6 microM) and for the lyase activities (1.7-2.0 microM) of the two enzymes. Antibodies to reductase, when added to testicular microsomes, inhibit both activities, but inhibition of lyase is greater than that of hydroxylase. The enzyme activity of reductase in testicular microsomes is 3-4 times higher than that of adrenal microsomes (0.29 and 0.08 nmol/min/mg of protein, respectively). These findings may account for the greater activity of lyase in testicular as opposed to adrenal microsomes.  相似文献   

11.
Soluble phosphodiesterase (EC 3.1.4.1) activity is 3-5-fold lower in superficial colonic epithelial cells compared to that in cells isolated from the lower colonic crypt. Higher phosphodiesterase activity in lower crypt cells is correlated with a 5-fold higher rate of incorporation of [3H]thymidine into DNA in these cells. DEAE-cellulose chromatography of the soluble fraction of superficial and proliferative colonic epithelial cells resulted in separation of three enzyme forms: (1) fraction I, an enzyme which hydrolyzes both cAMP and cGMP with high affinity (apparent Km cAMP = 5 +/- 1 microM, Km cGMP = 2.5 +/- 0.5 microM) and is stimulated 3-6-fold by Ca2+ plus calmodulin; (2) fraction II, a form which hydrolyzes both cAMP and cGMP with low affinity (S0.5 cAMP = 52 +/- 7 microM, S0.5 cGMP = 17 +/- 4 microM), exhibits positive copperativity with respect to substrate and shows cGMP stimulation of cAMP hydrolysis and (3) fraction III, a cAMP-specific form which exhibits biphasic kinetics, a low Km for cAMP (Km cAMP = 5 +/- 1 microM) and does not hydrolyze cGMP. The pattern of distribution of phosphodiesterase activities on DEAE-cellulose was similar in superficial and proliferative colonic epithelial cells. The higher specific activity in proliferative cells was reflected in higher activities of each of the three chromatographically distinct forms of the enzyme. In contrast to epithelial cells, the soluble fraction of homogenates of the submucosa and supporting cells exhibited phosphodiesterase forms I and II and was lacking in the form corresponding to fraction III of epithelial cells.  相似文献   

12.
These studies provide evidence for the presence of a microsomal ethanol oxidizing system in rat Leydig cells. Activity of the microsomal ethanol oxidizing system in Leydig cells was 47.4 +/- 4.1 nmol acetaldehyde per 20 min per mg protein, while activity in crude interstitial cells was 26.0 +/- 5.4 nmol. This suggests that among cells comprising interstitial cells, activity is concentrated in Leydig cells. Activity was linear with respect to protein concentration and incubation time. The highest specific activity was observed in the microsomal fraction. The most effective cofactor was NADPH. The apparent Km for ethanol was 4 mM, suggesting that this system could effectively metabolize ethanol at concentrations found in the blood of males who drink. The apparent Km for NADPH was 11 microM. The activity in Leydig cells was unaffected by 4-methylpyrazole or potassium cyanide, which inhibit alcohol dehydrogenase and catalase activities, respectively. These data provide strong evidence for an enzyme system in Leydig cell microsomes which is capable of metabolizing ethanol.  相似文献   

13.
The present work was done to investigate the cell localization of testicular aromatase activity and its regulation in immature pig testis using an in vitro model. Leydig cells and Sertoli cells were isolated from immature pig testes and cultured alone or together in the absence or presence of human chorionic gonadotropin (hCG) or porcine follicle-stimulating hormone (pFSH) for 2 days. At the end of incubation, the amounts of testosterone (T), estrone sulfate (E1S) and estradiol (E2) were measured. Then the cells were incubated for 4 h in the presence of saturating concentrations of delta 4-androstenedione (3 microM) and the amounts of E1S and E2 were measured again (aromatase activity). The ability of Sertoli cells to produce estrogens was very low and neither hCG nor pFSH had any significant effect. hCG stimulated, in a dose-dependent manner, the secretion of T and E1S by Leydig cells cultured alone as well as the aromatase activity of these cells. The main estrogen produced by Leydig cells was E1S. pFSH also stimulated the above parameters of Leydig cell function; this may have been due to the contamination of this hormone with luteinizing hormone (LH). Coculture of Leydig cells with Sertoli cells without gonadotropins had very small effects on T and E1S production and on aromatase activity. However, treatment of coculture with increasing concentrations of hCG had a dramatic effect on Leydig cell functions. For each hCG concentration, the amounts of T and E1S secreted, as well as the aromatase activity of the coculture, were 2- to 3-fold higher than those of Leydig cells cultured alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
An in vivo human chorionic gonadotropin (hCG)-receptor complex was solubilized from the subcellular fraction of ovarian and testicular tissues of rats that had been injected with 125-I-labeled hCG. The soluble hCG-receptor complex was partially characterized by Sepharose 6B chromatography in the presence of the nonionic detergent, Emulphogene, and was shown to have a molecular size of about 65 A. By this method it was also shown that the in vivo uptake of radioactivity by rat gonadal tissues represents 125-I-hCG and not the dissociated subunits or degradation products of the hormone. A soluble hCG-receptor complex isolated in vitro in approximately the same yield from both rat testicular and ovarian homogenates was shown to be the same size. The hCG-receptor appears to be specifically located in gonadal tissue; a corresponding hCG-receptor complex was not obtained from liver or kidney that incorporated significant levels of 125-I-hCG administered in vivo. Furthermore, a desialyzed hCG-receptor complex was obtained from rat testis but not liver; desialyzed hCG, like other desialyzed glycoproteins, is nonspecifically bound by rat liver homogenates. The binding of hCG and luteinizing hormone (LH) by rat testis receptor exhibits a high degree of specificity. Other glycoprotein hormones without LH activity, such as follicle-stimulating hormone and thyroid-stimulating hormone, and glycoproteins such as fetuin or alpha1-acid glycoprotein do not bind to the hCG/LH receptors. Desialyzed hCG was 2 times more effective in competing for binding to rat testis receptors than "native" hCG, indicating that caution must be exercised when the radioligand receptor assay is utilized to assay hCG preparations varying in sialic acid content.  相似文献   

15.
Testosterone (T) is an absolute requirement for spermatogenesis and is supplied by mature Leydig cells stimulated by LH. We previously showed in gonadotropin-deficient hpg mice that T alone initiates qualitatively complete spermatogenesis bypassing LH-dependent Leydig cell maturation and steroidogenesis. However, because maximal T effects do not restore testis weight or germ cell number to wild-type control levels, additional Leydig cell factors may be involved. We therefore examined 1). whether chronic hCG administration to restore Leydig cell maturation and steroidogenesis can restore quantitatively normal spermatogenesis and testis development and 2). whether nonandrogenic Leydig cell products are required to initiate spermatogenesis. Weanling hpg mice were administered hCG (0.1-100 IU i.p. injection three times weekly) or T (1-cm subdermal Silastic implant) for 6 weeks, after which stereological estimates of germinal cell populations, serum and testicular T content, and testis weight were evaluated. Human CG stimulated Leydig cell maturation and normalized testicular T content compared with T treatment where Leydig cells remained immature and inactive. The maximal hCG-induced increases in testis weight and serum T concentrations were similar to those for T treatment and produced complete spermatogenesis characterized by mature, basally located Sertoli cells (SCs) with tripartite nucleoli, condensed haploid sperm, and lumen development. Compared with T treatment, hCG increased spermatogonial numbers, but both hCG and T had similar effects on numbers of spermatocytes and round and elongated spermatids per testis as well as per SC. Nevertheless, testis weight and germ cell numbers per testis and per SC remained well below phenotypically normal controls, confirming the involvement of non-Leydig cell factors such as FSH for quantitative normalization of spermatogenesis. We conclude that hCG stimulation of Leydig cell maturation and steroidogenesis is not required, and that T alone mostly replicates the effects of hCG, to initiate spermatogenesis. Because T is both necessary and sufficient for initiation of spermatogenesis, it is likely that T is the main Leydig cell secretory product involved and that additional LH-dependent Leydig cell factors are not essential for induction of murine spermatogenesis.  相似文献   

16.
Adult rats were made bilaterally cryptorchid and studied at intervals of 3, 7, 14 or 21 days to study temporal changes in Leydig cell function. Serum FSH and LH levels were measured and the cross-sectional area of the Leydig cells assessed by morphometry. The function of the Leydig cells was judged by the binding of 125I-labelled hCG to testicular tissue in vitro and the testosterone response of the testis to hCG stimulation in vitro. By 3 days after cryptorchidism, the binding of labelled hCG to testicular tissue was significantly decreased compared to that of controls, but the testes were able to respond to hCG stimulation in vitro. At 7, 14 and 21 days after cryptorchidism, an enhanced testosterone response was observed and the size of the Leydig cells was significantly greater than that of the controls, which indicated increased secretory activity by the cryptorchid testis. Although serum FSH levels were significantly elevated after 3 days of cryptorchidism, serum LH levels did not rise until 7 days, thereby suggesting that the loss of receptors is unlikely to result from down-regulation by LH. The reduced testosterone response of the cryptorchid testis in vivo to low doses of hCG and the enhanced response at high doses are probably related to the reduced blood flow to the cryptorchid testis and the decreased sensitivity of the Leydig cells induced by LH/hCG receptor loss.  相似文献   

17.
The results of the measurement of 19-nortestosterone in the testiscular artery and vein of the stallion, the very low levels of this steroid in the peripheral blood of geldings and the similar patterns of increase in the peripheral levels of 19-nortestosterone and testosterone after hCG stimulation, show that 19-nortestosterone, like testosterone, is essentially synthesized in the testis. This testicular origin was confirmed by the ability of testicular tissue to synthesize 19-norandrogens from [4-14C]androgens in vitro. 19-Nortestosterone was 50% conjugated in the peripheral blood and almost entirely conjugated after biosynthesis in vitro. The sequence of appearance of steroids in the peripheral blood after a single injection of 10,000 IU hCG suggests that, in the equine testis, 19-norandrogens are produced by a specific C10-19 desmolase (estrene synthetase), stimulable by hCG. 19-Nortestosterone was aromatized into estradiol-17 beta by stallion testicular microsomes. The affinity of the aromatase for 19-nortestosterone was very low compared to that for testosterone. At low and presumably physiological levels, and at a high testosterone/19-nortestosterone ratio, testosterone did not inhibit 19-nortestosterone aromatization by more than 53%. Thus, 19-nortestosterone may be aromatized in vivo in the testis in spite of the endogenous concentrations of androgens. However, the low velocity of 19-nortestosterone aromatization by testicular microsomes at roughly physiological concentrations suggests that 19-norandrogen aromatization may only participate slightly in the testicular estrogen production. These results suggest that in the equine testis, two aromatizing enzyme systems may exist: one which aromatizes both androgens and 19-norandrogens, and a minority system more specific for 19-norandrogens.  相似文献   

18.
Steroid production and enzyme activities were examined in preparations of whole testis tissue, isolated interstitial tissue and seminiferous tubules obtained from adult rats with intact pituitaries receiving daily subcutaneous injections of 100 I.U. human chorionic gonadotropin for 5 days and from control animals. After human chorionic gonadotropin administration testosterone concentrations were increased in total homogenates of whole testis tissue, interstitial tissue and seminiferous tubules. The testosterone production from endogenous precursors was enhanced only in total homogenates of whole testis tissue and interstitial tissue obtained from testes of human chorionic gonadotropin-treated rats. The production of testosterone in the corresponding homogenates of isolated seminiferous tubules was very low. The specific activity of 3 beta-hydroxysteroid dehydrogenase was increased in total homogenates of whole testis tissue, isolated interstitial tissue and seminiferous tubules. No effect was observed on the specific activities of marker enzymes such as cytochrome c oxidase, monoamine oxidase, steroid sulfatase and lactate dehydrogenase, whereas the specific activities of carboxyl esterase were decreased in homogenates of whole testis tissue and interstitial tissue. Total activity of monoamine oxidase was increased in homogenates of interstitial tissue of tests from human chorionic gonadotropin treated rats. After the same prolonged human chorionic gonadotropin treatment the concentration of pregnenolone was increased in mitochondrial fractions of whole testis tissue, interstitial tissue and seminiferous tubules, and the amount of protein isolated in the mitochondrial fraction of interstitial tissue increased by 40%. Steroid production (estimated as pregnenolone) from endogenous precusors by mitochondrial fractions of whole testis tissue and interstitial tissue were increased after human chorionic gonadotropin treatment, for whole testis from 580 pmol/mg mitochondrial protein per h to 1420 pmol/mg per h; and for interstitial tissue from 2665 pmol/mg per h to 7050 pmol/mg per h. The production of pregnenolone in mitochondrial fractions obtaine from isolated seminiferous tubules was very low and contributed hardly at all to the total pregnenolone production in mitochondrial fractions of whole testis tissue from normal rats as well as from human chorionic gonadotropin-treated rats.  相似文献   

19.
The properties of hCG binding to LH receptors of the neonatal (5-day-old) rat testis were analysed and compared with those of the adult testis. The equilibrium association constants (Ka) of hCG-binding were similar at both ages, 2-4 X 10(10) M-1. In contrast, kinetic binding studies revealed that the association and dissociation rate constants of hCG binding were more rapid in the neonatal testis. Likewise, it was observed that the progression from loose (easily dissociable) to tight (non-dissociable) binding was less complete in the young than in the adult testis. Autoradiography of 125I-labelled hCG binding to interstitial cell suspensions at the two ages showed that the gonadotrophin binding per Leydig cell was about 50% lower in the neonatal testis. Conversely, since the surface area of adult Leydig cells was about 4-fold larger, the receptor density appeared to be higher in the neonatal Leydig cells. The rapid recovery of LH receptors after hCG stimulation, typical of the neonatal cells, was due to rapid replenishment of binding in the cells initially occupied by the injected hormone, rather than to an hCG-induced increase of Leydig cell number. Finally, in-vivo experiments with cycloheximide revealed that the rapid recovery of LH receptors was dependent on protein synthesis. These differences in the kinetics of neonatal testicular LH receptor turnover may be involved in the unique functional features of the fetal-neonatal growth phase of rat testicular Leydig cells.  相似文献   

20.
When the plasma concentrations of estrone sulfate (E1S) were measured in five menstrual cycles, the highest concentrations were found on the day of LH peak (14.25 nmol/l +/- 2.94 [SE]). Peak levels of E1S were 20 times higher than the highest E2 levels measured (0.769 +/- 0.276 nmol/l). To determine whether E1S can be metabolized by adult and fetal tissues we examined estrone (E1) sulfatase activity in brain and other tissues. E1 Sulfatase activity was present in all tissues studied including adult endometrium, fat and skin. When the rate of sulfatase activity was measured in homogenates of fetal hypothalamus, frontal cortex and pituitary (n = 4), the hypothalamic activity (306.0 +/- 39.1 [SE] pmol/min/mg protein) was significantly higher than that of the frontal cortex (127.4 +/- 19.4, P less than 0.002) or pituitary (193.7 +/- 43.3, P less than 0.03). This was not apparent in the adult (n = 2) where the enzyme activity was similar in the hypothalamus (413.9 +/- 27.3) and frontal cortex (446.3 +/- 82.2) and lower in the pituitary (98.2 +/- 19.2). The Km for E1 sulfatase in the fetal frontal cortex was 28.9 microM. The high E1 sulfatase activity in estrogen responsive target tissues, particularly fetal hypothalamus, accompanied by a large circulating reservoir of E1S, suggest that this enzyme could possibly have a regulatory role in controlling the level of intracellular estrogens and in modulating their intracellular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号