首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Properties of Cl-stimulated Mg2+-ATPase in the brain plasma membranes of the bream Abramis brama L. were studied; this enzyme is composed of basal Mg2+-ATPase activity that can be stimulated by 40–80% by Cl ions (Cl-ATPase). These anions stimulate the basal Mg2+-ATPase starting with 8 mM concentration, their maximal effect being observed at a concentration of 30–100 mM. The Cl-ATPase activity was found at a low molarity of HEPES-Tris buffer (< 30 mM) but was not revealed at a high molarity (> 30 mM). The basal Mg2+-ATPase activity was detected in the whole studied pH range (5.5–9.0), with maximum at pH 7.2–7.8 values, whereas optimum to reveal Cl-ATPase was at high and low H+ concentrations (pH 6.0 and 8.5, respectively). At physiological pH values (7.2–7.5) the Cl-ATPase activity was not revealed, but was detected after preincubation of the enzyme with 10 µM GABA. The basal Mg2+-ATPase, like Cl-ATPase, hydrolyzed ATP with a maximal rate, while CTP, ITP, and ADP only slightly, and did not hydrolyze GTP and AMP. The Cl-ATPase activity decreased in the presence of divalent cations in the following order: Mg2+ > Co2+ > Mn2+ = Cd2+ > Al3+ = Cu2+, and it was not found in the presence of Ca2+ and Zn2+. Anions of halogen series activated the basal Mg2+-ATPase in the descending order: Cl > Br > J > F. Among other monovalent anions, HCO3 activated the enzyme, NO3 practically had no effect, and SCN inhibited its activity. Blockers of Cl transport (ethacrinic acid, furosemide, and SITS) and GABA-receptor ligands (pentobarbital, diazepam, and picrotoxin) suppressed the enzyme activity. Out of SH-reagents, PCMB inhibited the enzyme, while NEM did not affect it. The H+-ATPase blocker oligomycin inhibited the enzyme, while the blocker of Na+,K+-ATPase ouabain and the blocker of Ca2+,Mg2+-ATPase ruthenium red had no effect. The properties of the Cl-stimulated Mg2+-ATPase of fish brain are discussed in comparison with those of the rat brain Cl-ATPase. The conclusion is made that the bream brain enzyme differs markedly from Cl-ATPase (the ATP-dependent Cl-pump) of mammalian brain.  相似文献   

2.
The effect of glycine and strychnine on Mg2+-ATPase from the microsomal fraction of the bream (Abramis bramaL.) brain was studied. The glycine in the concentration range 10–7–10–4M activates the enzyme. The effect of glycine on Mg2+-ATPase is obviated by 100 M strychnine. The strychnine in the concentration range 5–90 M activates the basal Mg2+-ATPase but decreases the effect of the enzyme activation by 10–4M glycine. The effect of Clon Mg2+-ATPase depends on the substrate concentration (Mg2+-ATP) and is not observed in the presence of 100 M strychnine. A receptor-dependent pathway of glycine and strychnine action on Cl-activated Mg2+-ATPase from bream brain microsomes is proposed.  相似文献   

3.
We studied the combined effect of diazepam and GABAA-ergic ligands on the activity of Cl-ATPase in plasma membrane of bream brain. The membrane fraction were preincubated and incubated with diazepam as well as with other GABAA-ergic ligands at physiological pH (7.4), i.e. under the conditions when Cl-ATPase activity is undetectable. GABA (0.1–100 M) induced Cl-ATPase activity with the maximum effect at 10 M. Diazepam (0.1 M) enhanced the effect of low GABA concentrations (0.1–1 M) on Cl-ATPase activity but had no effect on the enzyme in the presence of high GABA concentrations (10–100 M). At the same time, GABA (1 M) enhanced the effect of low diazepam concentrations (0.1–1 M) on the enzyme activity but had no effect on it in the presence of high concentrations of the ligand. Blockers of GABAA-ergic receptors, picrotoxin (50 M) and bicuculline (5 M), canceled the combined effect of diazepam and GABA on the enzyme activity. The obtained data demonstrate that the combined effect of diazepam and GABAA-ergic ligands on Cl-ATPase activity at physiological pH is similar to the effect of these ligands on GABAA/benzodiazepine/Cl channel.  相似文献   

4.
To understand the mechanism and molecular properties of the tonoplast-type H+-translocating ATPase, we have studied the effect of Cl, NO3, and 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid (DIDS) on the activity of the electrogenic H+-ATPase associated with low-density microsomal vesicles from oat roots (Avena sativa cv Lang). The H+-pumping ATPase generates a membrane potential (Δψ) and a pH gradient (ΔpH) that make up two interconvertible components of the proton electrochemical gradient (μh+). A permeant anion (e.g. Cl), unlike an impermeant anion (e.g. iminodiacetate), dissipated the membrane potential ([14C]thiocyanate distribution) and stimulated formation of a pH gradient ([14C]methylamine distribution). However, Cl-stimulated ATPase activity was about 75% caused by a direct stimulation of the ATPase by Cl independent of the proton electrochemical gradient. Unlike the plasma membrane H+-ATPase, the Cl-stimulated ATPase was inhibited by NO3 (a permeant anion) and by DIDS. In the absence of Cl, NO3 decreased membrane potential formation and did not stimulate pH gradient formation. The inhibition by NO3 of Cl-stimulated pH gradient formation and Cl-stimulated ATPase activity was noncompetitive. In the absence of Cl, DIDS inhibited the basal Mg,ATPase activity and membrane potential formation. DIDS also inhibited the Cl-stimulated ATPase activity and pH gradient formation. Direct inhibition of the electrogenic H+-ATPase by NO3 or DIDS suggest that the vanadate-insensitive H+-pumping ATPase has anion-sensitive site(s) that regulate the catalytic and vectorial activity. Whether the anion-sensitive H+-ATPase has channels that conduct anions is yet to be established.  相似文献   

5.
Cl absorption by theAplysia californica foregut is effected through an active Cl transport mechanism located in the basolateral membrane of the epithelial absorptive cells. These basolateral membranes contain both Cl-stimulated ATPase and ATP-dependent Cl transport activities which can be incorporated into liposomes via reconstitution. Utilizing the proteoliposomal preparation, it was demonstrated that ATP, and its subsequent hydrolysis, Mg2+, Cl, and a pH optimum of 7.8 were required to generate maximal intraliposomal Cl accumulation, electrical negativity, and ATPase activity. Additionally, an inwardly-directed valinomycininduced K+ diffusion potential, making the liposome interior electrically positive, enhanced both ATP-driven Cl accumulation and electrical potential while an outwardly-directed valinomycininduced K+ diffusion potential, making the liposome interior electrically negative, decreased both ATP-driven Cl accumulation and electrical potential compared with proteoliposomes lacking the ionophore. Either orthovanadate orp-chloromercurobenzene sulfonate inhibited both the ATP-dependent intraliposomal Cl accumulation, intraliposomal negative potential difference, and also Cl-stimulated ATPase activity. Both aspects of Cl pump transport kinetics and its associated catalytic component kinetics were the first obtained utilizing a reconstituted transporter protein. These results strongly support the hypothesis that Cl-ATPase actively transports Cl by an electrogenic process.  相似文献   

6.
Effects of GABA, glycine, acetylcholine, and glutamate (agonists of the GABAa/benzodiazepine, glycine, choline, and glutamate receptors, respectively) at concentrations in the range 10–8-10–4 M on the activity of basal Mg2+-ATPase of the plasma membrane fraction from bream brain and on its activation by Cl were investigated. GABA and glycine activated basal Mg2+-ATPase activity and suppressed its activation by Cl. Acetylcholine and glutamate activated basal Mg2+-ATPase to a lesser extent and did not suppress the activation of the enzyme by Cl.The activation of basal Mg2+-ATPase by neuromediators was decreased by blockers of the corresponding receptors (picrotoxin, strychnine, benztropine mesylate, and D-2-amino-5-phosphonovaleric acid). In addition, picrotoxin and strychnine eliminated the inhibiting effect of GABA and glycine, respectively, on the Cl-stimulated Mg2+-ATPase activity. Agonists of the GABAa/benzodiazepine receptor–phenazepam (10–8-10–4 M) and pentobarbital (10–6-10–3 M)–activated the basal Mg2+-ATPase activity and decreased the Cl-stimulated Mg2+-ATPase activity. The dependence of both enzyme activities on ligand concentration is bell-shaped. Moreover, phenazepam and pentobarbital increased the basal Mg2+-ATPase activity in the presence of 10–7 M GABA and did not influence it in the presence of 10–4 M GABA and 10–6 M glycine. The data suggest that in the fish brain membranes the Cl-stimulated Mg2+-ATPase interacts with GABAa/benzodiazepine and glycine receptors but not with m-choline and glutamate receptors.  相似文献   

7.
Summary Freshwater eel gills are notorious for their limited ability to pump chloride. As a result there is a considerable discrepancy between the Na+ and Cl plasma levels, and plasma HCO3 and blood pH are relatively high in this species.When eels are kept in tanks aerated with pure oxygen, significant alterations in blood acid-base balance, an increase in plasma pCO2 and a decrease in blood pH, are observed. In fish studied after 3 weeks hyperoxia, the decrease in blood pH is compensated by an increase in plasma HCO3 . Such fish exhibit a Cl influx 5 times higher than that observed in normoxic fish. This Cl influx is readily inhibited by addition of SCN to the external medium.An anion-stimulated ATPase activated by HCO3 and by Cl and inhibited by SCN was recently described in membrane fractions of the gills ofCarassius auratus, a fish noted for its high Cl pumping rate. This enzyme is also found in the gills of the eel. While the maximal rates of enzyme activation by HCO3 and by Cl are similar inCarassius andAnguilla, the affinity of the enzyme for Cl is 25 times higher inCarassius. In the microsomal fraction of the hyperoxic eel gills, the maximal anionstimulated ATPase activity remains unchanged but HCO3 affinity decreases by 50%, while Cl affinity increases 5 times. Thus some characteristics of this ATPase seem to be closely related to the Cl pump activity exhibited by the gill in fresh water.  相似文献   

8.
Summary Antibodies which were raised against highly purified membrane-bound (Na+–K+)-ATPase from the outer medulla of rat kidneys inhibit the (Na+–K+)-ATPase activity up to 95%. The antibody inhibition is reversible. The time course of enzyme inhibition and reactivation is biphasic in semilogarithmic plots.In the purified membrane-bound (Na+–K+)-ATPase negative cooperativity was observed (a) for the ATP dependence of the (Na+–K+)-ATPase activity (n=0.86), (b) for the ATP binding to the enzyme (n=0.58), and (c) for the ouabain inhibition of the (Na+–K+)-ATPase activity (n=0.77). By measuring the Na+ dependence of the (Na+–K+-ATPase reaction, a positive homotropic cooperativity (n=1.67) was found.As reactivation of the antibody-inhibited enzyme proceeds very slowly (t 0.5=5.2hr), it was possible to measure characteristics of the antibody-(Na+–K+)-ATPase complex: The antibodies exerted similar effects on the ATP dependence of the (Na+–K+)-ATPase reaction and on the ATP binding of the enzyme.V max of the (Na+–K+)-ATPase reaction and the number of ATP binding sites were reduced whileK 0.5 ATP for the (Na+–K+)-ATPase activity and for the ATP binding were increased by the antibodies. The Hill coefficients for the ATP binding and for the ATP dependence of the enzyme activity were not significantly altered by the antibodies. The antibodies increased theK 0.5 value for the Na+ stimulation of the (Na+–K+)-ATPase activity, but they did not alter the homotropic interactions between the Na+-binding sites. The negative cooperativity which was observed for the ouabain inhibition of the (Na+–K+)-ATPase activity was abolished by the antibodies.The data are tentatively explained by the following model: The antibodies bind to the (Na+–K+)-ATPase from the inner membrane side, reduce the ATP binding symmetrically at the ATP binding sites and reduce thereby also the (Na+–K+)-ATPase activity of the enzyme. The antibodies may inhibit the ATP binding by a direct interaction or by means of a conformational change at the ATP binding sites. This may possibly also lead to the alteration of the Na+ dependence of the (Na+–K+)-ATPase activity and to the observed alteration of the dose response to the ouabain inhibition.  相似文献   

9.
Summary The chloride conductance of the basolateral cell membrane of theNecturus proximal tubule was studied using conventional and chloride-sensitive liquid ion exchange microelectrodes. Individual apical and basolateral cell membrane and shunt resistances, transepithelial and basolateral, cell membrane potential differences, and electromotive forces were determined in control and after reductions in extracellular Cl. When extracellular Cl activity is reduced in both apical and basolateral solutions the resistance of the shunt increases about 2.8 times over control without any significant change in cell membrane resistances. This suggests a high Cl conductance of the paracellular shunt but a low Cl conductance of the cell membranes. Reduction of Cl in both bathing solutions or only on the basolateral side hyperpolarizes both the basolateral cell membrane potential difference and electromotive force. Hyperpolarization of the basolateral cell membrane potential difference after low Cl perfusion was abolished by exposure to HCO 3 -free solutions and SITS treatment. In control conditions, intracellular Cl activity was significantly higher than predicted from the equilibrium distribution across both the apical and basolateral cell membranes. Reducing Cl in only the basolateral solution caused a decrease in intracellular Cl. From an estimate of the net Cl flux across the basolateral cell membrane and the electrochemical driving force, a Cl conductance of the basolateral cell membrane was predicted and compared to measured values. It was concluded that the Cl conductance of the basolateral cell membrane was not large enough to account for the measured flux of Cl by electrodiffusion alone. Therefore these results suggest the presence of an electroneutral mechanism for Cl transport across the basolateral cell membrane of theNecturus proximal tubule cell.  相似文献   

10.
We studied the effect of furosemide on GABAA-induced 36Cl transport and GABAA-induced Cl--ATPase activity in synaptic membranes of fish brain. At physiological pH 7.4, GABA (0.1–100 µM) stimulated 36Cl influx in synaptoneurosomes and Cl--ATPase activity in synaptic membranes. Furosemide (0.1–0.5 mM) removed the activating effect of the mediator on chloride transport and enzyme activity (I50 equaled 0.16 and 0.12 mM, respectively). In the absence of the mediator, picrotoxin (50 µM) activated the basal 36Cl influx in synaptoneurosomes and the basal Mg2+-ATPase activity of synaptic membranes. Furosemide (1 mM) removed the activating effect of picrotoxin on both biochemical processes. The obtained data demonstrated similar sensitivities of GABAA-induced transport of 36Cl in synaptoneurosomes and of GABAA-induced Cl--ATPase activity in the synaptic membranes to furosemide and indicated the involvement of the ATPase in GABAA-induced processes. The soluble ATPase, recovered by sodium deoxycholate solubilization of the membranes, remained sensitive to GABAA-ergic ligands, which suggested proximity of their binding sites with ATP hydrolysis sites in the protein molecule and their structural coupling.Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 1, 2005, pp. 18–22.Original Russian Text Copyright © 2005 by Menzikov, Menzikova.  相似文献   

11.
Summary Electrophysiologic and tracer experiments have shown that Cl entersNecturus proximal tubule cells from the tubule lumen by a process coupled to the flow of Na+, and that Cl entry is electrically silent. The mechanism of Cl exit from the cell across the basolateral membrane has not been directly studied. To evaluate the importance of the movement of Cl ions across the basolateral membrane, the relative conductance of Cl to K+ was determined by a new method. Single-barrel ion-selective microelectrodes were used to measure intracellular Cl and K+ as a function of basolateral membrane PD as it varied normally from tubule to tubule. Basolateral membrane Cl conductance was about 10% of K+ conductance by this method. A second approach was to voltage clamp the basolateral PD to 20 mV above and below the spontaneous PD, while sensing intracellular Cl activity with the second barrel of a double-barrel microelectrode. An axial wire electrode in the tubule lumen was used to pass current across the tubular wall and thereby vary the basolateral membrane PD. Cell Cl activity was virtually unaffected by the PD changes. We conclude that Cl leavesNecturus proximal tubule cells by a neutral mechanism, possibly coupled to the efflux of Na+ or K+.  相似文献   

12.
The activating mechanism of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on (Ca2+–Mg2+)-ATPase in the plasma membranes of rat liver was investigated. (Ca2+–Mg2+)-ATPase activity was markedly increased by a sulfhydryl (SH) group protecting reagent dithiothreitol (DTT; 2.5 and 5 mM as a final concentration), while the enzyme activity was significantly decreased by a SH group modifying reagent N-ethylmaleimide (NEM; 0.5–5 mM). The effect of DTT (5 mM) to increase the enzyme activity was clearly blocked by NEM (5 mM). Regucalcin (0.25–1.0 M) significantly increased (Ca2+-Mg2+)-ATPase activity. This increase was completely blocked by NEM (5 mM). Meanwhile, digitonin (0.04%), which can solubilize the membranous lipids, significantly decreased (Ca2+–Mg2+)-ATPase activity. Digitonin did not have an effect on the DTT (5 mM)-increased enzyme activity. However, the effect of regucalcin (0.25 M) increasing (Ca2+–Mg2+)-ATPase activity was entirely blocked by the presence of digitonin. The present results suggest that regucalcin activates (Ca2+–Mg2+)-ATPase by the binding to liver plasma membrane lipids, and that the activation is involved in the SH groups which are an active site of the enzyme.  相似文献   

13.
We studied the effect of naloxone—an antagonist of the opioid receptors—on sensitivity of Cl-activated Mg2+-ATPase from the plasma membrane fraction of bream brain (Abramis brama L.) to GABAa-ergic substances. Preincubation of the plasma membranes with 1–100 M naloxone increased the basal Mg2+-ATPase activity and suppressed its activation by chloride ions. The same effects were observed in the presence of the agonists of GABAa/benzodiazepine receptors: 0.1–100 M GABA, 1–500 M pentobarbital, and 0.1–100 M phenazepam. Naloxone (10 M) inhibited activation of the basal Mg2+-ATPase by the studied ligands and restored the enzyme sensitivity to Cl. However, the effect of naloxone was not observed in the presence of high concentrations of pentobarbital (500 M) and phenazepam (100 M). The obtained data show that naloxone modulates the activity of Cl-activated Mg2+-ATPase from the plasma membranes of bream brain and antagonizes the GABAa receptor ligands.  相似文献   

14.
Summary Experiments were performed to determine the presence of a Cl–OH exchange (Cl–H+ cotransport) in the brush-border membranes isolated from the intestinal epithelium of freshwater trout. Determinations of alkaline phosphatase activities have shown that vesicle suspensions had an enrichment factor of about 17 in this enzyme indicating a high degree of purification of the brush-border membrane preparation. Cl uptake by vesicles in the presence of a proton gradient occurs against a concentration gradient with an overshoot ratio of about 2 and is inhibited by SITS. Several lines of evidence suggest that the mechanism involved is electrical in nature: (i) Cl uptake is increased when the proton gradient is increased, but there is a linear relationship between the Cl uptake and the Nernst potential of protons. (ii) Cl uptake is increased when a proton ionophore is added at low concentration and inhibited at high concentration, suggesting that a proton conductance is involved in the Cl uptake. (iii) there is a linear relationship between the initial speed of the uptake of increasing Cl concentrations and the Cl concentration. (iv) Cl uptake can be modulated by different potassium gradients with or without valinomycin. It is concluded that the enterocyte of the freshwater trout is not equipped with a Cl–OH exchange and the Cl uptake by vesicles is realized by a Cl conductance.  相似文献   

15.
Summary The dependence of colicin channel activity on membrane potential and peptide concentration was studied in large unilamellar vesicles using colicin E1, its COOH-terminal thermolytic peptide and other channel-forming colicins. Channel activity was assayed by release of vesicle-entrapped chloride, and could be detected at a peptide: lipid molar ratio as low as 10–7. The channel activity was dependent on the magnitude of atrans-negative potassium diffusion potential, with larger potentials yielding faster rates of solute efflux. For membrane potentials greater than –60mV (K in + /K out + 10), addition of valinomycin resulted in a 10-fold increase in the rate of Cl efflux. A delay in Cl efflux observed when the peptide was added to vesicles in the presence of a membrane potential implied a potential-independent binding-insertion mechanism. The initial rate of Cl efflux was about 1% of the single-channel conductance, implying that only a small fraction of channels were initially open, due to the delay or latency of channel formation known to occur in planar bilayers.The amount of Cl released as a function of added peptide increased monotonically to a concentration of 0.7 ng peptide/ml, corresponding to release of 75% of the entrapped chloride. It was estimated from this high activity and consideration of vesicle number that 50–100% of the peptide molecules were active. The dependence of the initial rate of Cl efflux on peptide concentration was linear to approximately the same concentration, implying that the active channel consists of a monomeric unit.  相似文献   

16.
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater (SW). Juvenile C. leucas captured in FW (3 mOsm l–1 kg–1) were acclimated to SW (980–1,000 mOsm l–1 kg–1) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l–1 kg–1. In SW, bull sharks had significantly higher plasma osmolarities (940 mOsm l–1 kg–1) than FW-acclimated animals and were slightly hypo-osmotic to the environment. Plasma Na+, Cl, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/K+-ATPase activity. Na+/K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg–1 protein h–1 and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/K+-ATPase activity was 5.6±0.8 and 9.2±0.6 mmol Pi mg–1 protein h–1, respectively. Na+/K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4±1.1 and 3.3±1.1 Pi mg–1 protein h–1, respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.  相似文献   

17.
The regulatory role of intracellular pH changes and of transmembrane Cl transport in the activation of Nicotiana tabacum L. pollen grains at a stage preceding in vitro germination was studied. The acidification of the cytosol with propionic acid hindered the germination of pollen grains, whereas its alkalization by fusicoccin-stimulated H+-ATPase activity of plasma membranes sharply increased the germination frequency with respect to control values. The activation of pollen grains was accompanied by the Cl efflux. The blockage of Cl efflux with 1 mM ethacrynic acid significantly decreased the intracellular pH and fully inhibited germination. The results allow assumption that the intracellular pH rise and Cl efflux are prerequisites for pollen grain activation.  相似文献   

18.
The effect of palmitic and oleic acids on Ca2+-ATPase activity in coupled preparations of sarcoplasmic reticulum isolated from rabbit hind leg muscle have been compared with their effects on vesicles uncoupled with Ca2+ ionophore, A23187. Palmitate at 2 µM · mg protein–1 has no significant effect on enzyme activity and does not uncouple catalytic activity from calcium accumulation within the vesicles. Oleic acid at 1 µM · mg protein–1 uncouples the vesicles, whereas 2 µM · mg protein–1 completely inhibits Ca2+-ATPase activity. Fluorescence anisotropy of diphenylhexatriene is not significantly altered by palmitate, but a large transient increase in motion of the probe is observed with addition of oleic acid. The effects of oleic acid on enzyme activity are not mediated via an effect on the bulk properties of the hydrophobic domain of the membrane lipids.  相似文献   

19.
The effect of fasting on calcium content and Ca2+-ATPase activity in the brain tissues of 5 weeks and 50 weeks old rats was investigated. Brain calcium content and Ca2+-ATPase activity in the microsomal and mitochondrial fractions of the brain homogenate from young and elderly rats were significantly increased by overnight–fasting. These increases were appreciably restored by a single oral administration of glucose solution (400 mg/100 g body weight) to fasted rats. In comparison with young and elderly rats, brain calcium content and microsomal Ca2+-ATPase activity were significantly elevated by increasing ages. The effect of ageing was not seen in the brain mitochondrial Ca2+-ATPase activity. When calcium (50 mg/100 g) was orally administered to young and elderly rats, brain calcium content was significantly elevated. The calcium administration–induced increase in brain calcium content was greater in elderly r crease in Ca2+-ATPase activity in the microsomal and mitochondrial fractions of brain homogenates from young rats. In aged rats, the microsomal Ca2+-ATPase activity was not further enhanced by calcium administration, although the mitochondrial enzyme activity was significantly raised. The present study demonstrates that the fasting–induced increase in brain calcium content is involved in Ca2+-ATPase activity raised in the brain microsomes and mitochondria of rats with different ages, supporting a energy–dependent mechanism in brain calcium accumulation.  相似文献   

20.
A rat brain P3 fraction enriched in ER derived microsomes was centrifuged through a 20–40% linear sucrose gradient in a Beckman Ti-14 Zonal rotor and 11 fractions were obtained. The distribution of marker enzyme activities and protein were determined in these 11 subfractions. NADPH-Cytochrome C reductase, choline phosphotransferase were employed for endoplasmic reticulum, Na+, K+-ATPase, 5-nucleotidase, and acetylcholinesterase were employed for plasma membrane, 2, 3-cyclic nucleotide phosphohydrolase was employed for myelin. The bulk of the protein was recovered in the 24–34% sucrose fractions, Na+, K+-ATPase, 5-nucleotidase, and acetylcholinesterase were in the 22–38% sucrose fractions while NADPH-cytochrome C reductase and CNPase were enriched in the 20–22% sucrose fractions. The ethanolamine and the serine base exchange activities had a bimodal distribution, with highest specific activities in sucrose fractions 32–34% and 20–24%. Choline base exchange activity was nearly undetectable in all the fractions. The specific activities of CDP-choline phosphotransferase, and phospholipid-N-methyltransferase were highest in the 20–22% sucrose fraction. Phospholipid-N-methyltransferase activity was significantly stimulated in the presence of exogenous phospholipid acceptors as phosphatidylethanolamine or phosphatidylmonomethylethanolamine or phosphatidyldimethylethanolamine, however, the greatest response was with phosphatidylmonomethylethanolamine. The rat brain P3 fraction yielded a population of a membrane at the light end of the sucrose gradient which has a buoyant density similar to myelin but seemed to be enriched with NADPN cytochrome C reductase and phospholipid modifying enzymes. This is in contrast to liver microsomes submitted to a similar fractionation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号