首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bombesin caused a marked stimulation of 32Pi into phosphatidylinositol (PI), with no apparent lag, and into phosphatidylcholine (PC), after a lag of about 20 min. Stimulation was blocked by the bombesin receptor antagonist, [D-Arg1, D-Pro2, D-Trp7,9, Leu11] substance P, indicating that the effects on both PI and PC were mediated through the same receptor. The tumor-promoting phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) and dioctanoylglycerol (diC8) both directly activate protein kinase C and in this report were shown to stimulate 32Pi incorporation into PC but not into Pl. In addition, TPA stimulated the release of [3H]choline and [3H]phosphocholine and the accumulation of [3H]diacyglycerol from prelabelled cells. These results strongly suggest that TPA activates a phospholipase C specific for PC. Pretreatment of cells with phorbol-12, 13-dibutyrate (PDBu) for 24 h depleted cellular protein kinase C activity and inhibited the ability of TPA to induce these effects suggesting a direct involvement of protein kinase C. Similarly the bombesin stimulation of 32Pi into PC and of [3H]choline and [3H]phosphocholine release was inhibited by PDBu pretreatment. DiC8 and, to a lesser extent, TPA stimulated the translocation of CTP:phosphocholine cytidylytransferase from the cytosolic to the particulate fraction. DiC8 also stimulated this translocation in cells depleted of protein kinase C. It was concluded that both bombesin and TPA activated protein kinase C leading to activation of a phospholipase C specific for PC.  相似文献   

2.
The purpose of this study is to clarify the involvement of protein kinase C in pulmonary surfactant secretion from adult rat alveolar type II cells in primary culture. Surfactant secretion in vitro is stimulated by at least two classes of compounds. One class, (e.g. terbutaline) increases intracellular cyclic AMP, whereas the other class (e.g. 12-O-tetradecanoylphorbol 13-acetate (TPA] does not. TPA has been shown to activate protein kinase C in other cell systems. In our studies, 1-oleoyl-2-acetyl-sn-glycerol (OAG), which is a direct activator of protein kinase C, stimulated [3H] phosphatidylcholine secretion by alveolar type II cells in a dose- and time-dependent manner. Tetracaine, which is an inhibitor of protein kinase C, inhibited the TPA-induced secretion of [3H]phosphatidylcholine from alveolar type II cells in a dose-dependent manner. However, tetracaine had no effect on terbutaline-induced secretion. The effects of terbutaline and OAG upon surfactant secretion were significantly more than additive, but those of TPA and OAG were less than additive. The specific activity of protein kinase C was 6-fold higher than cyclic AMP-dependent protein kinase found in type II cells when both kinases were assayed using lysine-rich histone as a common phosphate acceptor. Ninety-four per cent of protein kinase C activity was recovered in the cytosolic fraction of unstimulated type II cells, and 40% of activity in cytosolic fraction was translocated to particulate fraction upon treatment with TPA. As observed in other tissues, protein kinase C of alveolar type II cells was highly activated by 1,2-dioleoyl-sn-glycerol or TPA in the presence of Ca2+ and phosphatidylserine. These results suggest that pulmonary surfactant secretion in vitro is stimulated by both protein kinase C and cyclic AMP-dependent protein kinase.  相似文献   

3.
Trypsinization of rat brain protein kinase C (80 kDa) into 50- and 32-kDa fragments occurred without inhibition of [3H]phorbol dibutyrate ([3H]PDBu) binding activity. The 50-kDa fragment, the catalytic domain (Inoue, M., Kishimoto, A., Takai, Y., and Nishizuka, Y. (1977) J. Biol. Chem. 252, 7610-7616), was further degraded by trypsin, whereas the 32-kDa fragment was resistant. Protein kinase activity and the [3H]PDBu binding activity were completely separated upon gel filtration of a solution containing Triton X-100/phosphatidylserine mixed micelles and trypsinized protein kinase C. Pooled fractions of the [3H]PDBu binding activity contained a 32-kDa fragment exclusively. The binding of [3H]PDBu to this fragment was dependent on calcium and phosphatidylserine and was of high affinity (Kd = 2.8 nM) and of essentially identical specificity to that of native protein kinase C. It is concluded that the 32-kDa fragment represents a lipid binding, regulatory domain of protein kinase C.  相似文献   

4.
The synthetic fluorescent derivatives of 12-O-tetradecanoylphorbol-13-acetate (TPA), dansyl-TPA, dansyl-TPA-20-acetate and dansyl-TPA-13-desacetate, have ID50 values in the [3H]PDBu binding assay of 2nM, 30nM and 1000nM respectively; the ID50 value of TPA is 4nM. Dansyl-TPA is also equipotent with TPA as an activator of protein kinase C(PKC) producing half maximum stimulation at 2nM. Dansyl-TPA-13-desacetate is almost as potent as dansyl-TPA, while dansyl-TPA-20-acetate is completely inactive as an activator of PKC. The cellular uptake of these fluorescent TPA derivatives tends to parallel their activity in the [3H]PDBu binding assay. Treatment of C3H 10T1/2 cells with 100nM dansyl-TPA results in intense fluorescence of the entire cytoplasm, while the nucleus is virtually devoid of fluorescence. The uptake of fluorescence is quenched by an excess of TPA. Thus, dansyl-TPA rapidly enters cells and binds to specific sites distributed throughout the cytoplasm. Presumably these sites reflect the cellular localization of phorbol ester receptors and protein kinase C.  相似文献   

5.
The feedback regulatory control mechanism exerted by activated Ca2+/phospholipid-dependent protein C kinase upon gonadotropin releasing hormone (GnRH) binding, stimulation of phosphoinositide turnover and gonadotropin secretion was investigated in cultured pituitary cells. Addition of the tumor promoter phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), at concentrations which activate pituitary protein C kinase, to cultured pituitary cells resulted in up-regulation of GnRH receptors (155% at 4 h). The stimulatory effect of GnRH on [3H]inositol phosphates (Ins-P) production in myo-[2-3H]inositol prelabeled pituitary cells was not inhibited by prior treatment of the cells with TPA (10(-9)-10(-7) M). Higher concentrations of TPA (10(-6)-10(-5) M) inhibited the effect of GnRH on [3H]Ins-P production. Increasing concentrations of TPA or the permeable analog of diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) stimulated luteinizing hormone (LH) release from cultured pituitary cells with ED50 values of 5 x 10(-9) M and 10 micrograms/ml, respectively. No consistent inhibition or additivity of LH release was observed when increasing doses of TPA or OAG were added with a submaximal dose of GnRH. These results suggest that protein C kinase might mediate the known homologous up-regulation of GnRH receptors during the reproductive cycle. Protein C kinase is positively involved in mediating the process of gonadotropin secretion. Unlike many other systems, activation of protein C kinase in pituitary gonadotrophs is not involved in negative feed-back regulation of stimulus-secretion-coupling mechanisms in GnRH-stimulated gonadotrophs.  相似文献   

6.
12-O-Tetradecanoylphorbol-13-acetate (TPA) stimulated the release of [3H]ethanolamine from HeLa cells prelabeled with [3H]ethanolamine within 2 min, and of [3H]choline from cells prelabeled with [3H]choline after a lag of 10-20 min. This result suggests that TPA activates phospholipase D. Propranolol alone or propranolol plus TPA stimulated phosphatidic acid (PA) labeling in cells prelabeled with [3H]hexadecanol. In the presence of ethanol, TPA stimulated the accumulation of labeled phosphatidylethanol (PEth); no PEth was formed in the absence of TPA. TPA-dependent PEth accumulation was not observed in cells pretreated with TPA to down-regulate protein kinase C, whereas propranolol-induced accumulation of PA was unaffected by TPA pretreatment. Incubation of prelabeled cells with propranolol alone caused a rapid loss of label and phospholipid mass from both phosphatidylethanolamine and phosphatidylcholine (PC) together with an accumulation of PA and phosphatidylinositol plus phosphatidylserine. When [3H]hexadecanol-prelabeled cells were pulse labeled with 32P to label nucleotide pools, propranolol induced the accumulation of both 3H- and 32P-labeled PA. When cells were prelabeled with lyso-PC double labeled with 3H and 32P, and incubated with propranolol, only 3H-labeled PA accumulated, indicating that the pathways involved in the basal turnover of PC resulted in the loss of 32P from the lipid. These results suggest that the basal turnover of phosphatidylethanolamine and PC involves the sequential actions of phospholipase C, diglyceride kinase, and PA phosphohydrolase.  相似文献   

7.
Protein kinase C is generally accepted to be a receptor protein of tumor-promoting phorbol esters. The binding of [3H]phorbol-12,13-dibutyrate to protein kinase C can be assayed by a rapid filtration procedure using a glass-fiber filter that has been treated with a cationic polymer, polyethylenimine. The phorbol ester specifically binds to the protein kinase only in the presence of phosphatidylserine and calcium. Non-specific binding is less than 10%, at most, of the total binding. The binding is linear with respect to the concentration of protein kinase C, is dependent on the concentrations of phorbol ester and phosphatidylserine in a saturative manner, and is inhibited by diacylglycerol (an endogenous activator of the protein kinase).  相似文献   

8.
The role of protein kinase C in phospholipase A2 (PLA2) activation in rat basophilic leukemia cells (RBL-2H3) and macrophages was investigated. 12-O-Tetradecanoyl phorbol 13-acetate (TPA) doubled ionomycin-induced PLA2 activity, assessed by [3H]arachidonate release. Protein kinase C inhibitors, staurosporine and K252a (100 nM) or H-7 (15 micrograms/ml) inhibited ionomycin-stimulation of PLA2 activity by 62, 75 and 80%, respectively. Down-regulation of protein kinase C by prolonged treatment with TPA inhibited Ca2(+)-ionophore A23187 or antigen-stimulation of [3H]arachidonate release by 80%. We examined whether the inhibitory effect of dexamethasone (DEX) on PLA2 activity is related to modulation of protein kinase C activity. The 50% inhibition by DEX of ionomycin elevation of [3H]arachidonate release was almost overcome by addition of TPA. The Ca2+ ionophore and antigen-induced increase in [3H]TPA binding to intact RBL cells was not impaired by DEX. However, DEX markedly reduced phosphorylation of several proteins. 1-Oleoyl-2-acetyl-glycerol (OAG) had a sustained stimulatory effect on PLA2 activity in isolated plasma membranes derived from treated bone-marrow intact mouse macrophages, while both DEX and staurosporine reduced elevated PLA2 activity by 68 and 84%, respectively. The results support an essential role for protein kinase C in regulation of PLA2 activity.  相似文献   

9.
M Mitsuhashi  D G Payan 《Life sciences》1988,43(18):1433-1440
The present study was undertaken in order to examine the effect of protein kinase C (PKC) on histamine H1 receptors (H1R) present on the smooth muscle cell line, DDT1MF-2. [3H]-pyrilamine binding revealed that specific [3H]-pyrilamine binding sites were reduced by pretreatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, but not the Kd. The TPA analogue, 4 alpha phorbol 12,13-didecanoate, which does not activate PKC, failed to induce down-regulation of H1R. TPA-induced down-regulation of H1R was inhibited by pretreatment with 1-(5-Isoquinilinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), a PKC inhibitor, in a dose dependent manner. The H-7 analogue, H-8, which is a less potent inhibitor of PKC, but a potent inhibitor of cyclic nucleotide dependent protein kinase, had no effect on H1R. Moreover, treatment with TPA inhibited histamine-induced increases in [Ca2+]i in cells loaded with the fluorescent indicator, indo-1. These data suggest that H1R in DDT1MF-2 cells are functionally regulated by PKC.  相似文献   

10.
12-O-Tetradecanoylphorbol-13-acetate (TPA), a tumor promoter and potent activator of protein kinase C, stimulates [3H]choline incorporation into phosphatidylcholine (PtdCho) in NG108-15 cells (Liscovitch, M., Freese, A., Blusztajn, J. K. and Wurtman, R. J. (1986) J. Neurochem. 47, 1936-1941). In the present study we demonstrate that two cell-permeant diacylglycerols, sn-1-oleoyl-2-acetylglycerol and sn-1,2-dioctanoylglycerol, also stimulate [3H]choline incorporation into PtdCho. However, the effect of diacylglycerol is additional to that produced by a maximally effective concentration of TPA (0.5 microM), suggesting that the two agents may not act via the same mechanism. In addition, the protein kinase inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (at 200 microM) inhibits the action of TPA by 59% while not affecting that of diacylglycerol. Finally, preincubation of the cells with TPA (0.1 microM) for 24 h reduces protein kinase C activity in the cells and completely abolishes the effect of additional TPA on choline incorporation. In contrast, diacylglycerol-induced stimulation of PtdCho biosynthesis was not inhibited in the cells that were desensitized to TPA. These results suggest that the effect of the two cell-permeant diacylglycerols on PtdCho biosynthesis either is not mediated by protein kinase C activation, or, is mediated by a TPA-insensitive isoenzyme of protein kinase C.  相似文献   

11.
The effects of phorbol esters [phorbol 12,13-dibutyrate (PDB), 12-O-tetradecanoylphorbol 13-acetate (TPA), and phorbol 13-acetate] were investigated on the release of [3H]norepinephrine, 45Ca2+ accumulation, and protein kinase C activity in cultured sympathetic neurons of the chick embryo. Sympathetic neurons derived from 10-day-old chick embryo were cultured in serum-free medium supplemented with insulin, transferrin, and nerve growth factor. After 3 days, neurons were loaded with [3H]-norepinephrine and the release of [3H]norepinephrine was determined before and after electrical stimulation. Stimulation at 1 Hz for 15 s increased the release of [3H]-norepinephrine over the nonstimulation period. Stimulation-evoked release gradually declined with time during subsequent stimulation periods. Incubation of neurons in Ca2+-free Krebs solution containing 1 mM EGTA completely blocked stimulation-evoked release of [3H]-norepinephrine. Stimulation-evoked release of [3H]-norepinephrine was markedly facilitated by 3 and 10 nM PDB or TPA. The spontaneous release was also enhanced by PDB and TPA. The net accumulation of 45Ca2+ during stimulation of sympathetic neurons was increased by two- to fourfold in the presence of PDB or TPA. PDB at 1-100 nM produced a concentration-dependent increase in the activation of protein kinase C. PDB at 30 nM increased the activity of protein kinase C of the particulate fraction from 0.09 to 0.58 pmol/min/mg protein. There was no significant change in protein kinase C activity of the cytosolic fraction (0.14 pmol/min/mg versus 0.13 pmol/min/mg protein). The ratio of the particulate to cytosolic protein kinase C increased from a control value of 0.62 to 4.39 after treatment with 30 nM PDB. TPA (10 and 30 nM) also increased protein kinase C activity of the particulate fraction by six- to eightfold. Phorbol 13-acetate had no effect on protein kinase C activity, [3H]norepinephrine release, and 45Ca2+ accumulation. These results provide direct evidence that activation of protein kinase C enhances Ca2+ accumulation, which in turn leads to the facilitation of transmitter release in sympathetic neurons.  相似文献   

12.
M Issandou  J M Darbon 《FEBS letters》1991,281(1-2):196-200
The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) is shown to be mitogenic for quiescent glomerular mesangial cells cultured in serum-free conditions. TPA induces DNA synthesis measured by [3H]thymidine incorporation in a dose-dependent manner with an ED50 of 7 ng/ml and an optimal response for 50 ng/ml. The phorbol ester action is potentiated by insulin with an increase of the maximal effect from 232 +/- 15% for TPA alone to 393 +/- 96% for TPA plus insulin. Down-regulation of protein kinase C by prolonged exposure to TPA completely abolishes the mitogenic effect of the phorbol ester. Using a highly resolutive 2D electrophoresis, we have shown that TPA is able to stimulate the phosphorylation of 2 major proteins of Mr 80,000, pl 4.5 (termed 80K) and Mr 28,000, pI 5.7-5.9 (termed 28K). The 80K protein phosphorylation is time- and dose-dependent with an ED50 of 8 ng/ml TPA. Exposure of mesangial cells to heat-shock induces synthesis of a 28K protein among a set of other proteins suggesting that the 28K protein kinase C substrate belongs to the family of low molecular mass stress proteins. Mitogenic concentrations of TPA and phorbol 12,13-dibutyrate inhibit [125 I]epidermal growth factor binding and stimulate the 80K protein phosphorylation with the same order of potency. The inactive tumor-promoter 4 alpha-phorbol was found to be ineffective both on these 2 parameters and on DNA synthesis. These results suggest a positive role for protein kinase C on mesangial cell proliferation and indicate the existence in this cell line of 2 major protein kinase C substrates.  相似文献   

13.
Three lipid A derivatives (hexaacyl monophosphoryl lipid A, hexaacyl diphosphoryl lipid A, and disaccharide precursor IVA) were shown to activate protein kinase C from rabbit brain. These derivatives substituted for phosphatidylserine in a concentration-dependent manner and did not compete for binding of [3H]phorbol dibutyrate to its receptor site. Instead, phorbol dibutyrate binding was increased on raising the concentration of the derivatives in a similar manner to phosphatidylserine. The phorbol ester 12-0-tetra-decanol 13-acetate augmented the activation of protein kinase C by the lipid A derivatives.  相似文献   

14.
Cardiac sarcolemma was purified from canine ventricles. Enrichment of the sarcolemmal membranes was demonstrated by the high (Na+ + K+)-ATPase activity of 28.0 +/- 1.5 mumol Pi/mg protein per h and the high concentration of muscarinic receptors with the Bmax of 8.2 +/- 2.5 pmol/mg protein as determined by [3H]QNB binding. The purified sarcolemma also contains significant levels of a membrane-bound Ca2+ and phospholipid-dependent protein kinase (protein kinase C). To elucidate the protein kinase C activity in sarcolemma, a prior incubation of the membranes with EGTA and Triton X-100 was necessary. The specific activity of protein kinase C was found to be 131.4 pmol Pi/mg per min, in the presence of 6.25 micrograms phosphatidylserine and 0.5 mM CaCl2. Treatment of sarcolemma with 12-O-tetradecanoylphorbol 13-acetate (TPA) and phorbol 12,13-dibutyrate (PBu2) resulted in a concentration-dependent activation of protein kinase C activity. The effect of TPA and PBu2 on protein kinase C in sarcolemma was independent of exogenous Ca2+ and phosphatidylserine. Polymyxin B inhibited phorbol-ester-induced activation of protein kinase C activity. The distribution of protein kinase C in the cytosolic fraction was also examined. The specific activity of the kinase in the cytosolic fraction was 59.7 pmol Pi/mg per min. However, the total protein kinase C activity in the cytosol was 213500 pmol Pi/min, compared to that of 1025 pmol Pi/min in the sarcolemma isolated from approx. 100 g of canine ventricular muscle. Several endogenous proteins in cardiac sarcolemma were phosphorylated in the presence of Ca2+ and phosphatidylserine. The major substrates for protein kinase C were proteins of Mr 94 000, 87 000, 78 000, 51 000, 46 000, 11 500 and 10 000. Most of these substrate proteins have not been identified before. Other proteins of Mr 38 000, 31 000 and 15 000 were markedly phosphorylated in the presence of Ca2+ only. Phosphorylation of phospholamban (Mr 27 000 and 11 000) was also stimulated in the presence of Ca2+ and phosphatidylserine, but the low Mr form of phospholamban was distinct from two other low Mr substrate proteins for protein kinase C. Polymyxin B was more selective in inhibiting the protein kinase C dependent phosphorylation. On the other hand, trifluoperazine selectively inhibited the phosphorylation of phospholamban and Mr 15 000 protein. Although the exact function of this kinase is unknown, based on these observations, we believe that protein kinase C in the cardiac sarcolemma may play an important role in the cell-surface-signal regulated cardiac function.  相似文献   

15.
The regulation of glycogen synthase by Ca2+-mobilizing hormones was studied by using rat liver parenchymal cells in primary culture. Long-term exposure of hepatocytes to 4 beta-phorbol 12-myristate 13-acetate (TPA) resulted in a decrease in vasopressin or ATP inhibition of glycogen synthesis and glycogen synthase activity, without any change in the activation of glycogen phosphorylase. In contrast, treatment with TPA did not diminish the effects of glucagon, isoprenaline or A23187 on glycogen synthase or phosphorylase. TPA treatment for 18 h did not change specific [3H]vasopressin binding, but abolished protein kinase C activity in a concentration-dependent manner. The effects of TPA to decrease protein kinase C activity and to reverse the inactivation of glycogen synthase by vasopressin were well correlated and were mimicked by mezerein, but not by 4 alpha-phorbol. However, 1 microM-TPA totally inhibited protein kinase C activity, but reversed only 60% of the vasopressin effect on glycogen synthase. It is therefore concluded that Ca2+-mobilizing hormones inhibit glycogen synthase partly, but not wholly, through a mechanism involving protein kinase C.  相似文献   

16.
A mixed micellar assay for the binding of phorbol-esters to protein kinase C was developed to investigate the specificity and stoichiometry of phospholipid cofactor dependence and oligomeric state of protein kinase C (Ca2+/phospholipid-dependent enzyme) required for phorbol ester binding. [3H]Phorbol dibutyrate was bound to protein kinase C in the presence of Triton X-100 mixed micelles containing 20 mol % phosphatidylserine (PS) in a calcium-dependent manner with a Kd of 5 X 10(-9) M. The [3H]phorbol dibutyrate X protein kinase C . Triton X-100 . PS mixed micellar complex eluted on a Sephacryl S-200 molecular sieve at an Mr of approximately 200,000; this demonstrates that monomeric protein kinase C binds phorbol dibutyrate. This conclusion was supported by molecular sieve chromatography of a similar complex where Triton X-100 was replaced with beta-octylglucoside. Phorbol dibutyrate activation of protein kinase C in Triton X-100/PS mixed micelles occurred and was dependent on calcium. The PS dependence of both phorbol ester activation and binding to protein kinase C lagged initially and then was highly cooperative. The minimal mole per cent PS required was strongly dependent on the concentration of phorbol dibutyrate or phorbol myristic acetate employed. Even at the highest concentration of phorbol ester tested, a minimum of 3 mol % PS was required; this indicates that approximately four molecules of PS are required. [3H]Phorbol dibutyrate binding was independent of micelle number at 20 mol % PS. The phospholipid dependencies of phorbol ester binding and activation were similar, with PS being the most effective; anionic phospholipids (cardiolipin, phosphatidic acid, and phosphatidylglycerol were less effective, whereas phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin did not support binding or activation. sn-1,2-Dioleoylglycerol displaced [3H]phorbol dibutyrate quantitatively and competitively. The data are discussed in relation to a molecular model of protein kinase C activation.  相似文献   

17.
Continuous exposure of rat glioma C6 cells to 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in a time and dose dependent loss of [3H]phorbol dibutyrate binding sites and protein kinase C activity. Thus, by 24 h, the cells were essentially depleted of protein kinase C activity. In agreement with previous studies, TPA treatment caused a reduction in isoproterenol-stimulated adenylate cyclase activity and a sequestration of beta-adrenergic receptors. Cells were treated with TPA for 24-48 h to completely down-regulate protein kinase C and then exposed to isoproterenol. Agonist-mediated desensitization of adenylate cyclase and sequestration of beta-adrenergic receptors occurred at similar rates in control and TPA-treated cells. In addition, agonist-mediated down-regulation of beta-adrenergic receptors was not impaired by the absence of protein kinase C activity. Although both agonists and phorbol esters cause desensitization of the beta-adrenergic receptor-coupled adenylate cyclase, agonist-mediated events can occur independently of protein kinase C.  相似文献   

18.
In this study we report that pretreatment of human amniotic (WISH) cells with interferon gamma (IFN-gamma) in the presence of 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in the down-modulation of epidermal growth factor (EGF) receptors with respect to both receptor number and affinity. Scatchard analysis of EGF binding in the absence of both IFN-gamma and TPA indicated biphasic binding whereas addition of TPA resulted in the loss of the higher affinity class of sites. Pretreatment with IFN-gamma for 24 h enhanced the TPA-induced inhibition of EGF binding whereas IFN-gamma alone had no effect on binding. Protein kinase C (Ca2+/phospholipid-dependent enzyme) was examined as a possible mediator of IFN-induced EGF-receptor modulation; pretreatment of cells with IFN-gamma affected neither the binding of [3H]phorbol 12,13-dibutyrate to membrane or cytosolic fractions nor the protein kinase C activity, suggesting that IFN-gamma pretreatment did not result in translocation or activation of protein kinase C.  相似文献   

19.
Binding of [3H]-staurosporine to different protein kinases was time-dependent, reversible and saturable. Scatchard analysis of saturation isotherms indicated one class of binding sites for [3H]-staurosporine with dissociation constants (KD) of 9.6, 2.0, 3.0 and 7.4 nM for protein kinase C, cAMP-dependent protein kinase, tyrosine protein kinase and calcium/calmodulin-dependent protein kinase respectively. [3H]-staurosporine binding was fully displaced by unlabelled staurosporine or the related compound K-252a whereas other protein kinase inhibitors (H-7, H-8 and W-7) did not compete with [3H]-staurosporine. These data confirm that sataurosporine shows no selectivity for different protein kinases and suggest the putative existence of distinct, specific binding sites for [3H]-staurosporine on these enzymes.  相似文献   

20.
Bryostatins: potent, new mitogens that mimic phorbol ester tumor promoters   总被引:6,自引:0,他引:6  
Bryostatins (2 ng/ml), when combined with insulin in serum-free culture medium, are strongly mitogenic for Swiss 3T3 cells that have been arrested in the G1/G0 phase of the cell cycle. The mitogenic effect of the bryostatins is similar to that of 12-O-decanoylphorbol-13-acetate (TPA). A prior treatment of the cultures with TPA eliminated the mitogenic response to bryostatin and to a second addition of TPA. Conversely, a prior treatment of the cultures with bryostatin eliminated the mitogenic response to TPA. Bryostatin potently inhibited the binding of [3H]phorbol dibutyrate to a high affinity receptor in the cells. The findings suggest that the bryostatins and TPA act via the same receptor, possibly protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号