首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Only the PHA synthase is required for formation of spherical intracellular PHA granules emerging at cell poles. This study aims to assign the polar targeting signal in the PHA synthase and to provide insight into molecular mechanisms of granule formation. Random in-frame insertion mutagenesis indicated dispensable and essential regions suggesting that only the N terminus (<100 aa) is dispensable and forms a random coil structure. The inactive PHA synthase (C319A) is still localized to cell poles, indicating that the nascent PHA chain does not serve as an anchor or signal for subcellular localization and granule formation. Deletion of the N terminus did neither affect subcellular localization nor PHA granule formation. The deletion of the hydrophobic C terminus (68 aa) did not impact on subcellular localization of the PHA synthase, but abolished PHA synthase activity. The structural protein PhaP1 was found to be not required for subcellular localization and initiation of granule formation. PhaP1 only localizes to the cell poles, when PHA granules are formed. These data suggested that the PHA synthase itself localizes to the cell poles via its core region (93-521 aa), which is structurally constraint and comprises the polar positional information for self-assembly of PHA granules at the cell poles.  相似文献   

2.
聚羟基脂肪酸酯(polyhydroxyalkanoate)PHA 纳米微球是很多微生物在营养失衡的情况下,在体内合成的一种可生物降解的细胞内聚酯,主要作为微生物的碳源及能量储备。天然 PHA 微球的内部是由疏水的聚酯链构成的疏水核心,其外层是由磷脂界膜及膜上嵌入或附着的包括 PHA合酶 PhaC 和 PHA 颗粒相关蛋白 PhaP 等蛋白构成的边界层。PhaC 通过共价键连接在PHA微球表面,而 PhaP 通过疏水相互作用吸附在 PHA 微球表面。通过将外源性功能蛋白与 PhaC 或 PhaP 进行融合表达,在重组微生物体内就能直接合成表面带有功能蛋白的纳米微球复合体。由于该纳米微球在微生物细胞内是以独立的包涵体形式存在,因此通过细胞破碎及离心等方法就能简便、有效地使其从细胞中分离并得以纯化。鉴于 PHA 微球这种表面易被修饰改造的特性,越来越多的功能蛋白通过与 PHA 微球表面蛋白(PhaC 或 PhaP)的融合表达,呈递在了 PHA 微球表面,使其成为一种廉价、高效的蛋白固定化及呈递的新技术。本文在介绍了 PHA 微球的结构特性及生物合成的基础上,着重综述了目前关于功能化 PHA 微球在蛋白纯化、固定化酶、生物分离、靶向递药、疾病诊断、成像技术及新型疫苗开发方面的研究现状及其未来在生物医药等领域的广泛应用前景。  相似文献   

3.
Polyhydroxyalkanoate (PHA) synthase PhaC plays a very important role in biosynthesis of microbial polyesters PHA. Compared to the extensively analyzed C-terminus of PhaC, N-terminus of PhaC was less studied. In this paper, the N-terminus of two class I PHA synthases PhaCRe and PhaCAh from Ralstonia eutropha and Aeromonas hydrophila, respectively, and one class II synthase PhaC2Ps of Pseudomonas stutzeri strain 1317, were investigated for their effect on PHA synthesis. For PhaCRe, deletion of 2–65 amino acid residues on the N-terminus led to enhanced PHB production with high PHB molecular weight of 2.50 × 106 Da. For PhaCAh, the deletion of the N-terminal residues resulted in increasing molecular weights and widening polydispersity accompanied by a decreased PHA production. It was found that 3-hydroxybutyrate (3HB) monomer content in copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (3HHx) increased when the first 2–9 and 2–13 amino acid residues in the N-terminus of PhaC2Ps were deleted. However, deletion up to the 40th amino acid disrupted the PHA synthesis. This study confirmed that N-terminus in different types of PHA synthases showed significant roles in the PHA productivity and elongation activity. It was also indicated that N-terminal mutation was very effective for the location of functional regions at N-terminus.  相似文献   

4.
A two‐hybrid approach was applied to screen for proteins with the ability to interact with PHB synthase (PhaC1) of Ralstonia eutropha. The H16_A0141 gene (phaM) was identified in the majority of positive clones. PhaM (26.6 kDa) strongly interacted with PhaC1 and with phasin PhaP5 but not with PhaP1 or other PHB granule‐associated proteins. A ΔphaM mutant accumulated only one or two large PHB granules instead of three to six medium‐sized PHB granules of the wild type, and distribution of granules to daughter cells was disordered. All three phenotypes (number, size and distribution of PHB granules) were reversed by reintroduction of phaM. Purified PhaM revealed DNA‐binding properties in gel mobility shift experiments. Expression of a fusion of the yellow fluorescent protein (eYfp) with PhaM resulted in formation of many small fluorescent granules that were bound to the nucleoid region. Remarkably, an eYfp–PhaP5 fusion localized at the cell poles in a PHB‐negative background and overexpression of eYfp–PhaP5 in the wild type conferred binding of PHB granules to the cell poles. In conclusion, subcellular localization of PHB granules in R. eutropha depends on a concerted expression of at least three PHB granule‐associated proteins, namely PhaM, PhaP5 and PHB synthase PhaC1.  相似文献   

5.
This study demonstrated that engineered polyhydroxyalkanoate (PHA) synthases can be employed as molecular tools to covalently immobilize enzymes at the PHA granule surface. The beta-galactosidase was fused to the N terminus of the class II PHA synthase from Pseudomonas aeruginosa. The open reading frame was confirmed to encode the complete fusion protein by T7 promoter-dependent overexpression. Restoration of PHA biosynthesis in the PHA-negative mutant of P. aeruginosa PAO1 showed a PHA synthase function of the fusion protein. PHA granules were isolated and showed beta-galactosidase activity. PHA granule attached proteins were analyzed and confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Surprisingly, the beta-galactosidase-PHA synthase fusion protein was detectable at a high copy number at the PHA granule, compared with PHA synthase alone, which was barely detectable at PHA granules. Localization of the beta-galactosidase at the PHA granule surface was confirmed by enzyme-linked immunosorbent assay using anti-beta-galactosidase antibodies. Treatment of these beta-galactosidase-PHA granules with urea suggested a covalent binding of the beta-galactosidase-PHA synthase to the PHA granule. The immobilized beta-galactosidase was enzymologically characterized, suggesting a Michaelis-Menten reaction kinetics. A Km of 630 microM and a Vmax of 17.6 nmol/min for orthonitrophenyl-beta-D-galactopyranoside as a substrate was obtained. The immobilized beta-galactosidase was stable for at least several months under various storage conditions. This study demonstrated that protein engineering of PHA synthase enables the manufacture of PHA granules with covalently attached enzymes, suggesting an application in recycling of biocatalysts, such as in fine-chemical production.  相似文献   

6.
The whole polyhydroxyalkanoate (PHA) synthesis gene locus of Pseudomonas stutzeri strain 1317 containing PHA synthase genes phaC1Ps, phaC2Ps and PHA depolymerase gene phaZPs was cloned using a PCR cloning strategy. The sequence analysis results of the phaC1Ps, phaC2Ps and phaZPs showed high homology to the corresponding pha loci of the known Pseudomonas strains, respectively. PhaC1Ps and PhaC2Ps were functionally expressed in recombinant Escherichia coli strains and their substrate specificity was compared. The results demonstrated that PhaC1Ps and PhaC2Ps from P. stutzeri 1317 had different substrate specificities when expressed in E. coli. In details, PhaC2Ps could incorporate both short-chain-length 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates (mcl 3HA) into PHA, while PhaC1Ps only favored mcl 3HA for polymerization.  相似文献   

7.
Here, the class I polyhydroxyalkanoate synthase (PhaC) from Ralstonia eutropha was investigated regarding the functionality of its conserved C-terminal region and its ability to tolerate translational fusions to its C terminus. MalE, the maltose binding protein, and green fluorescent protein (GFP) were considered reporter proteins to be translationally fused to the C terminus. Interestingly, PhaC remained active only when a linker was inserted between PhaC and MalE, whereas MalE was not functional. However, the extension of the PhaC N terminus by 458 amino acid residues was required to achieve a functionality of MalE. These data suggested a positive interaction of the extended N terminus with the C terminus. To assess whether a linker and/or N-terminal extension is generally required for a functional C-terminal fusion, GFP was fused to the C terminus of PhaC. Both fusion partners were active without the requirement of a linker and/or N-terminal extension. A further reporter protein, the immunoglobulin G binding ZZ domain of protein A, was translationally fused to the N terminus of the fusion protein PhaC-GFP and resulted in a tripartite fusion protein mediating the production of polyester granules displaying two functional protein domains.Polyhydroxyalkanoates (PHAs) are biopolyesters synthesized by many bacteria and some archaea in times of unbalanced nutrient availability (7, 14-16, 22). These polyesters are stored as water-insoluble inclusions inside the cells and serve as energy and carbon storage (11, 29, 30). PHA synthases catalyze the stereoselective conversion of (R)-3-hydroxyacyl-coenzyme A (CoA) to PHAs while CoA is released and intracellular PHA granules are formed (32). The PHA synthase remains covalently attached to the PHA granule surface and has been targeted by protein engineering, i.e., translational fusion to the dispensable and variable N terminus, to enable the display of various protein functions without affecting the synthase activity (8, 26). PHA granules displaying certain functionalities have been considered as biobeads for biotechnological and medical applications (11).PHA synthases can be divided into four classes. Class I and class II enzymes consist of only one subunit (PhaC) (28) and produce short-chain-length PHAs (class I) or medium-chain-length PHAs (class II), respectively (30, 33). Polyester synthases belonging to class III consist of two subunits, PhaC and PhaE, and produce short-chain-length PHAs (20, 21). Class IV PHA synthases are similar to enzymes belonging to class III. The synthases of this class comprise the two subunits PhaC and PhaR (23, 24).It was previously shown that the N terminus of PhaC is a highly variable region and not essential for PHA synthase activity (30, 35). In contrast, the C terminus is a rather conserved region among class I and class II PHA synthases and is essential for enzyme activity (31). Alignments of the amino acid sequences of different PHA synthases revealed that the C terminus of these enzymes is hydrophobic and was therefore suggested to interact with the hydrophobic core of PHA granules (30). The PhaC subunits of class III and class IV PHA synthases do not show a high hydrophobicity for their C- terminal regions. Previous studies showed that the PhaC subunit of the class IV PHA synthase from Bacillus megaterium tolerates fusions to its C terminus without a loss in activity as long as the hydrophobic second subunit, PhaR, is present as well (23).The aim of this study was to assess the effect of the conserved hydrophobic C terminus of PhaC on enzyme activity with regard to the possibility of translationally fusing protein functions for display at the PHA granule surface. This will be of interest for the display of proteins that require their free C terminus for activity.  相似文献   

8.
【目的】研究地中海富盐菌PHA合酶(Pha EC)中Pha E亚基乙酰化修饰对其功能的影响,探讨乙酰化修饰对菌体生理代谢的调控作用。【方法】蔗糖密度梯度离心收集PHA颗粒,质谱鉴定颗粒结合蛋白Pha E的乙酰化位点。将乙酰化位点(赖氨酸,K)分别突变为精氨酸(R)(模拟去乙酰化)或谷氨酰胺(Q)(模拟乙酰化),利用同源双交换原理,将突变后的基因原位敲入基因组。以野生型为对照,检测突变对菌体生长、葡萄糖消耗和PHA合成能力的影响。利用Western blot检测PHA颗粒上Pha E的含量,进一步分析乙酰化修饰对蛋白功能的影响。【结果】在Pha E蛋白105位和170位赖氨酸(K)2个位点检测到乙酰化修饰。利用遗传操作系统将突变的基因原位敲入,共得到6种突变株。发酵结果表明,任何一种单突变对菌体生长及PHA合成的影响均不明显。但当2个位点同时突变成精氨酸(K105R/K170R)时,突变株生长及合成PHA的能力均受到明显抑制,2个位点同时突变成谷氨酰胺(K105Q/K170Q)则无明显影响。进一步的Western blot结果表明,突变成精氨酸的双突变株的PHA颗粒上,Pha E蛋白的含量相较于野生型约降低了一半。【结论】Pha E蛋白的去乙酰化能够导致菌株利用葡萄糖合成PHA的能力显著降低,其可能原因是降低了Pha E与PHA颗粒或PHA颗粒上Pha C的结合能力,从而降低了Pha EC合酶的活性。  相似文献   

9.
Computer simulation of polyhydroxyalkanoate (PHA) granule formation in vivo could help to design strategies to optimize the fermentation process and achieve higher yields of PHA. It could also suggest biotechnological approaches to control the granule size and molecular weight of the polymer. A computer program simulating the formation of PHA granules inside a Ralstonia eutropha cell was developed, based on published experimental data. The results are applicable to R. eutropha cells or other microorganisms and transgenic plants, where polyhydroxybutyrate production is made possible by heterologous expression systems. The simulation starts at the outset of the PHA accumulation phase when the cells are small and contain no PHA granules. In the presence of abundant glucose, the cell responds to phosphorus limitation by producing 3-hydroxybutyryl-CoA which undergoes polymerization on the few PHA synthase molecules present in the cytoplasm. The amphiphilic PHA synthase–PHA complex attracts additional PHA synthase molecules and granules begin to grow from these initiation sites. Phosphorus limitation and the appearance of PHA in the cytoplasm also stimulate production of phasin molecules that attach themselves to the growing granules. As the granules grow bigger, they begin to touch each other and move to optimize their packing. The phasin coat prevents the granules from coalescing. The size of the cell increases and its prolate ellipsoid shape becomes closer to spherical. The accumulation process stops either when the supply of glucose is exhausted or when the granules become tightly packed within the cell, so that access to their surface is limited. All important variables, such as cell dimensions, granule size, counts of granule-associated molecules, PHA yield, degree of polymerization of the PHA molecules, etc., are recorded in real time during the simulation. Examples of virtual experiments with the cell and their results are shown.  相似文献   

10.
Ectothiorhodospira shaposhnikovii is able to accumulate polyhydroxybutyrate (PHB) photoautotrophically during nitrogen-limited growth. The activity of polyhydroxyalkanoate (PHA) synthase in the cells correlates with PHB accumulation. PHA synthase samples collected during the light period do not show a lag phase during in vitro polymerization. Synthase samples collected in the dark period displays a significant lag phase during in vitro polymerization. The lag phase can be eliminated by reacting the PHA synthase with the monomer, 3-hydroxybutyryl-CoA (3HBCoA). The PHA synthase genes (phaC and phaE) were cloned by screening a genomic library for PHA accumulation in E. coli cells. The PHA synthase expressed in the recombinant E. coli cells was purified to homogeneity. Both sequence analysis and biochemical studies indicated that this PHA synthase consists of two subunits, PhaE and PhaC and, therefore, belongs to the type III PHA synthases. Two major complexes were identified in preparations of purified PHA synthase. The large complex appears to be composed of 12 PhaC subunits and 12 PhaE subunits (dodecamer), whereas the small complex appears to be composed of 6 PhaC and 6 PhaE subunits (hexamer). In dilute aqueous solution, the synthase is predominantly composed of hexamer and has low activity accompanied with a significant lag period at the initial stage of reaction. The percentage of dodecameric complex increases with increasing salt concentration. The dodecameric complex has a greatly increased specific activity for the polymerization of 3HBCoA and a negligible lag period. The results from in vitro polymerizations of 3HBCoA suggest that the PHA synthase from E. shaposhnikovii may catalyze a living polymerization and demonstrate that two PhaC and two PhaE subunits comprise a single catalytic site in the synthase complex.  相似文献   

11.
The immunoglobulin G (IgG) binding ZZ domain of protein A from Staphylococcus aureus was fused to the N terminus of the polyhydroxyalkanoate (PHA) synthase from Cupriavidus necator. The fusion protein was confirmed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and mediated formation of ZZ domain-displaying PHA granules in recombinant Escherichia coli. The IgG binding capacity of isolated granules was assessed using enzyme-linked immunosorbent assay and could be enhanced by the overproduction of the ZZ-PHA synthase. ZZ-PHA granules enabled efficient purification of IgG from human serum.  相似文献   

12.
BACKGROUND: Tetrazolium salts are widely used in biology as indicators of metabolic activity - hence termed vital dyes - but their reduction site is still debated despite decades of intensive research. The prototype, 2,3,5- triphenyl tetrazolium chloride, which was first synthesized a century ago, often generates a single formazan granule at the old pole of Escherichia coli cells after reduction. So far, no explanation for their pole localization has been proposed. METHOD/PRINCIPAL FINDINGS: Here we provide evidence that the granules form in the periplasm of bacterial cells. A source of reducing power is deduced to be thiol groups destined to become disulfides, since deletion of dsbA, coding for thiol-oxidase, enhances the formation of reduced formazan. However, pervasive reduction did not result in a random distribution of formazan aggregates. In filamentous cells, large granules appear at regular intervals of about four normal cell-lengths, consistent with a diffusion-to-capture model. Computer simulations of a minimal biophysical model showed that the pole localization of granules is a spontaneous process, i.e. small granules in a normal size bacterium have lower energy at the poles. This biased their diffusion to the poles. They kept growing there and eventually became fixed. CONCLUSIONS: We observed that formazan granules formed in the periplasm after reduction of tetrazolium, which calls for re-evaluation of previous studies using cell-free systems that liberate inaccessible intracellular reductant and potentially generate artifacts. The localization of formazan granules in E. coli cells can now be understood. In living bacteria, the seeds formed at or migrated to the new pole would become visible only when that new pole already became an old pole, because of the relatively slow growth rate of granules relative to cell division.  相似文献   

13.
Aeromonas hydrophila CGMCC 0911 possessing type I polyhydroxyalkanoate (PHA) synthase (PhaC) produced only PHBHHx from lauric acid but not from glucose. Medium-chain-length (mcl) PHA was produced from lauric acid or glucose only when PhaC of A. hydrophila was inactivated, indicating the existence of another PHA synthase in the wild type. Using PCR cloning strategy, the potential PHA synthase gene (phaC mcl) was obtained from genomic DNA of the wild type and exhibited strong homology to type II PHA synthase genes of Pseudomonas strains. The phaC mcl gene was PCR subcloned into plasmid pBBR1MCS2 and expressed in a PHA-negative mutant of Pseudomonas putida. Recombinant P. putida synthesized mcl PHA from gluconate or octanoate. This result proved that wild type A. hydrophila possessed another type II PHA synthase, which was responsible for the synthesis of mcl PHA, besides type I PHA synthase.  相似文献   

14.
Poly-3-hydroxyalkanoates [P(3HA)s] are biologically produced polyesters that have attracted much attention as biodegradable polymers that can be produced from biorenewable resources. These polymers have many attractive properties for use as bulk commodity plastics, fishing lines, and medical uses that are dependent on the repeating unit structures. Despite the readily apparent benefits of using P(3HA)s as replacements for petrochemical-derived plastics, the use and distribution of P(3HA)s have been limited by their cost of production. This problem is currently being addressed by the engineering of enzymes involved in the production of P(3HA)s. Polyhydroxyalkanoate (PHA) synthase (PhaC) enzymes, which catalyze the polymerization of 3-hydroxyacyl-CoA monomers to P(3HA)s, were subjected to various forms of protein engineering to improve the enzyme activity or substrate specificity. This review covers the recent history of PHA synthase engineering and also summarizes studies that have utilized engineered PHA synthases.  相似文献   

15.
Seven strains of sulfate-reducing bacteria (SRB) were tested for the accumulation of polyhydroxyalkanoates (PHAs). During growth with benzoate Desulfonema magnum accumulated large amounts of poly(3-hydroxybutyrate) [poly(3HB)]. Desulfosarcina variabilis (during growth with benzoate), Desulfobotulus sapovorans (during growth with caproate), and Desulfobacterium autotrophicum (during growth with caproate) accumulated poly(3HB) that accounted for 20 to 43% of cell dry matter. Desulfobotulus sapovorans and Desulfobacterium autotrophicum also synthesized copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyvalerate when valerate was used as the growth substrate. Desulfovibrio vulgaris and Desulfotalea psychrophila were the only SRB tested in which PHAs were not detected. When total DNA isolated from Desulfococcus multivorans and specific primers deduced from highly conserved regions of known PHA synthases (PhaC) were used, a PCR product homologous to the central region of class III PHA synthases was obtained. The complete pha locus of Desulfococcus multivorans was subsequently obtained by inverse PCR, and it contained adjacent phaE(Dm) and phaC(Dm) genes. PhaC(Dm) and PhaE(Dm) were composed of 371 and 306 amino acid residues and showed up to 49 or 23% amino acid identity to the corresponding subunits of other class III PHA synthases. Constructs of phaC(Dm) alone (pBBRMCS-2::phaC(Dm)) and of phaE(Dm)C(Dm) (pBBRMCS-2::phaE(Dm)C(Dm)) in various vectors were obtained and transferred to several strains of Escherichia coli, as well as to the PHA-negative mutants PHB(-)4 and GPp104 of Ralstonia eutropha and Pseudomonas putida, respectively. In cells of the recombinant strains harboring phaE(Dm)C(Dm) small but significant amounts (up to 1.7% of cell dry matter) of poly(3HB) and of PHA synthase activity (up to 1.5 U/mg protein) were detected. This indicated that the cloned genes encode functionally active proteins. Hybrid synthases consisting of PhaC(Dm) and PhaE of Thiococcus pfennigii or Synechocystis sp. strain PCC 6308 were also constructed and were shown to be functionally active.  相似文献   

16.
17.
18.
Cho M  Brigham CJ  Sinskey AJ  Stubbe J 《Biochemistry》2012,51(11):2276-2288
Class I polyhydroxybutyrate (PHB) synthase (PhaC) from Ralstonia eutropha catalyzes the formation of PHB from (R)-3-hydroxybutyryl-CoA, ultimately resulting in the formation of insoluble granules. Previous mechanistic studies of R. eutropha PhaC, purified from Escherichia coli (PhaC(Ec)), demonstrated that the polymer elongation rate is much faster than the initiation rate. In an effort to identify a factor(s) from the native organism that might prime the synthase and increase the rate of polymer initiation, an N-terminally Strep2-tagged phaC (Strep2-PhaC(Re)) was constructed and integrated into the R. eutropha genome in place of wild-type phaC. Strep2-PhaC(Re) was expressed and purified by affinity chromatography from R. eutropha grown in nutrient-rich TSB medium for 4 h (peak production PHB, 15% cell dry weight) and 24 h (PHB, 2% cell dry weight). Analysis of the purified PhaC by size exclusion chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gel permeation chromatography revealed that it unexpectedly copurified with the phasin protein, PhaP1, and with soluble PHB (M(w) = 350 kDa) in a "high-molecular weight" (HMW) complex and in monomeric/dimeric (M/D) forms with no associated PhaP1 or PHB. Assays for monitoring the formation of PHB in the HMW complex showed no lag phase in CoA release, in contrast to M/D forms of PhaC(Re) (and PhaC(Ec)), suggesting that PhaC in the HMW fraction has been isolated in a PHB-primed form. The presence of primed and nonprimed PhaC suggests that the elongation rate for PHB formation is also faster than the initiation rate in vivo. A modified micelle model for granule genesis is proposed to accommodate the reported observations.  相似文献   

19.
PHA synthase is the key enzyme involved in the biosynthesis of microbial polymers, polyhydroxyalkanoates (PHA). In this study, we created a hybrid library of PHA synthase gene with different crossover points by an incremental truncation method between the C-terminal fragments of the phaC(Cn) (phaC from Cupriavidus necator) and the N-terminal fragments of the phaC1(Pa) (phaC from Pseudomonas aeruginosa). As the truncation of the hybrid enzyme increased, the in vivo PHB synthesis ability of the hybrids declined gradually. PHA synthase PhaC(Cn) with a deletion on N-terminal up to 83 amino acid residues showed no synthase activity. While with the removal of up to 270 amino acids from the N-terminus, the activity of the truncated PhaC(Cn) could be complemented by the N-terminus of PhaC1(Pa). Three of the hybrid enzymes W188, W235 and W272 (named by the deleted nucleic acid number) were found to have altered product specificities.  相似文献   

20.
Polyhydroxyalkanoate (PHA)-producing Bacillus strains possess class IV PHA synthases composed of two subunit types, namely, PhaR and PhaC. In the present study, PHA synthases from Bacillus megaterium NBRC15308(T) (PhaRC(Bm)), B. cereus YB-4 (PhaRC(YB4)), and hybrids (PhaR(Bm)C(YB4) and PhaR(YB4)C(Bm)) were expressed in Escherichia coli JM109 to characterize the molecular weight of the synthesized poly(3-hydroxybutyrate) [P(3HB)]. PhaRC(Bm) synthesized P(3HB) with a relatively high molecular weight (M(n) = 890 × 10(3)) during 72 h of cultivation, whereas PhaRC(YB4) synthesized low-molecular-weight P(3HB) (M(n) = 20 × 10(3)). The molecular weight of P(3HB) synthesized by PhaRC(YB4) decreased with increasing culture time and temperature. This time-dependent behavior was observed for hybrid synthase PhaR(Bm)C(YB4), but not for PhaR(YB4)C(Bm). These results suggest that the molecular weight change is caused by the PhaC(YB4) subunit. The homology between PhaCs from B. megaterium and B. cereus YB-4 is 71% (amino acid identity); however, PhaC(YB4) was found to have a previously unknown effect on the molecular weight of the P(3HB) synthesized in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号