首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stabilization of microtubules by tubulin-GDP-Pi subunits   总被引:5,自引:0,他引:5  
Microtubule dynamic instability has been accounted for by assuming that tubulin subunits at microtubule ends differ from the tubulin-GDP subunits that constitute the bulk of the microtubule. It has been suggested that this heterogeneity results because ends contain tubulin subunits that have not yet hydrolyzed an associated GTP molecule. Alternatively, in a recent model it was proposed that ends contain tubulin-GDP-Pi subunits from which Pi has not yet dissociated. The models differ in their predicted response to added ligands: because GDP in subunits in microtubules does not exchange with nucleotide in solution, the heterogeneity from a tubulin-GTP cap will not be eliminated by added GTP; however, the dissociability of Pi in tubulin-GDP-Pi subunits will allow a heterogeneity resulting from a tubulin-GDP-Pi cap to be eliminated by added excess Pi. Elimination of the heterogeneity is expected to be manifested by an elimination of dynamic instability behavior. Using video microscopy to study the kinetic behavior of individual microtubules under reaction conditions where dynamic instability is the dominant mechanism for microtubule length changes, we have determined the effects of 0.167 M Pi on the rate of subunit addition in the elongation phase, the rate of subunit dissociation in the rapid shortening phase, and the rates of the phase transitions from elongation to rapid shortening and from rapid shortening to growing. Since 0.167 M Pi did not decrease the subunit dissociation rate in the rapid shortening phase or the rate of the phase transition from growing to rapid shortening, our results provide no support for the hypothesis that tubulin-GDP-Pi subunits are responsible for dynamic instability behavior of microtubules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of five derivatives of Combretastatin D on tubulin polymerization was investigated. All of them were found to stabilize microtubules to various degrees. The derivatives bearing polar substituents were found to be the most active.  相似文献   

3.
  相似文献   

4.
Stabilization of overlapping microtubules by fission yeast CLASP   总被引:3,自引:0,他引:3  
Many microtubule (MT) structures contain dynamic MTs that are bundled and stabilized in overlapping arrays. CLASPs are conserved MT-binding proteins implicated in the regulation of MT plus ends. Here, we show that the Schizosaccharomyces pombe CLASP, cls1p/peg1p, mediates the stabilization of overlapping MTs within the mitotic spindle and interphase bundles. cls1p localizes to these regions but not to interphase MT plus ends. Inactivation of cls1p leads to the rapid depolymerization of spindle midzone MTs. cls1p also stabilizes a subset of MTs within interphase bundles. cls1p prevents disassembly of the entire microtubule, while still allowing for plus-end growth. It has no measurable effects on MT nucleation, polymerization, catastrophe, or bundling. A direct interaction with ase1p (PRC1/MAP65) targets cls1p to regions of antiparallel MT overlap. These findings show how a MT-stabilizing factor attached to specific sites on MTs can help to generate MT structures that have both dynamic and stable components.  相似文献   

5.
In order to elucidate how the elementary reactions of GTP cleavage and subsequent inorganic phosphate (Pi) release, which accompany microtubule assembly, regulate microtubule dynamics, the effect of Pi and of its structural analogues AlF4- and BeF3- on the stability of GDP-microtubules has been investigated. Inorganic phosphate binds to microtubules with a low affinity (KD = 25 mM) and slows down the rate of GDP-subunit dissociation by about 2 orders of magnitude. AlF4- and BeF3- exhibit phosphate-like effects with 1000-fold higher affinity. Evidence has been obtained for direct binding of BeF3- to microtubules with a stoichiometry of 1 mol of BeF3- per mole of GDP-subunit and an equilibrium dissociation constant of 12-15 microM. AlF4- and Pi compete for this site. Phosphate analogues abolish oscillatory polymerization kinetics and slow down microtubule turnover at steady state. In view of these results, we propose that Pi and its structural analogues bind to the site of the gamma-phosphate of GTP in the E site and reconstitute a GDP-Pi-microtubule, from which tubulin subunits dissociate very slowly. We therefore understand that, following GTP cleavage on microtubules, Pi release in the medium is accompanied by a structural change resulting in a large destabilization of the polymer. A cap of slowly dissociating GDP-Pi-subunits prevents depolymerization of the microtubule GDP-core at steady state. The similarity with the actin system [Carlier, M.-F., & Pantaloni, D. (1988) J. Biol. Chem. 263, 817-825] is underlined.  相似文献   

6.
Background: Microtubules polymerized from pure tubulin show the unusual property of dynamic instability, in which both growing and shrinking polymers coexist at steady state. Shortly after its addition to a microtubule end, a tubulin subunit hydrolyzes its bound GTP. Studies with non-hydrolyzable analogs have shown that GTP hydrolysis is not required for microtubule assembly, but is essential for generating a dynamic polymer, in which the subunits at the growing tip have bound GTP and those in the bulk of the polymer have bound GDP. It has been suggested that loss of the ‘GTP cap’ through dissociation or hydrolysis exposes the unstable GDP core, leading to rapid depolymerization. However, evidence for a stabilizing cap has been very difficult to obtain.Results We developed an assay to determine the minimum GTP cap necessary to stabilize a microtubule from shrinking. Assembly of a small number of subunits containing a slowly hydrolyzed GTP analog (GMPCPP) onto the end of dynamic microtubules stabilized the polymer to dilution. By labeling the subunits with rhodamine, we measured the size of the cap and found that as few as 40 subunits were sufficient to stabilize a microtubule.Conclusion On the basis of statistical arguments, in which the proportion of stabilized microtubules is compared to the probability that when 40 GMPCPP-tubulin subunits have polymerized onto a microtubule end, all protofilaments have added at least one GMPCPP-tubulin subunit, our measurements of cap size support a model in which a single GTP subunit at the end of each of the 13 protofilaments of a microtubule is sufficient for stabilization. Depolymerization of a microtubule may be initiated by an exposed tubulin–GDP subunit at even a single position. These results have implications for the structure of microtubules and their means of regulation.  相似文献   

7.
Movements of membrane-bounded organelles through cytoplasm frequently occur along microtubules, as in the neuron-specific case of fast axonal transport. To shed light on how microtubule-based organelle motility is regulated, pharmacological probes for GTP-binding proteins, or protein kinases or phosphatases were perfused into axoplasm extruded from squid (Loligo pealei) giant axons, and effects on fast axonal transport were monitored by quantitative video-enhanced light microscopy. GTP gamma S caused concentration-dependent and time-dependent declines in organelle transport velocities. GDP beta S was a less potent inhibitor. Excess GTP, but not GDP, masked the effects of coperfused GTP gamma S. The effects of GTP gamma S on transport were not mimicked by broad spectrum inhibitors of protein kinases (K-252a) or phosphatases (microcystin LR and okadaic acid), or as shown earlier, by ATP gamma S. Therefore, suppression of organelle motility by GTP gamma S was guanine nucleotide- specific and evidently did not involve irreversible transfer of thiophosphate groups to protein. Instead, the data imply that organelle transport in the axon is modulated by cycles of GTP hydrolysis and nucleotide exchange by one or more GTP-binding proteins. Fast axonal transport was not perturbed by AlF4-, indicating that the GTP gamma S- sensitive factors do not include heterotrimeric G-proteins. Potential axoplasmic targets of GTP gamma S include dynamin and multiple small GTP-binding proteins, which were shown to be present in squid axoplasm. These collective findings suggest a novel strategy for regulating microtubule-based organelle transport and a new role for GTP-binding proteins.  相似文献   

8.
Cortical microtubules (MTs) in protoplasts prepared from tobacco (Nicotiana tabacum L.) BY-2 cells were found to be sensitive to cold. However, as the protoplasts regenerated cell walls they became resistant to cold, indicating that the cell wall stabilizes cortical MTs against the effects of cold. Since poly-l-lysine was found to stabilize MTs in protoplasts, we examined extensin, an important polycationic component of the cell wall, and found it also to be effective in stabilizing the MTs of protoplasts. Both extensin isolated from culture filtrates of tobacco BY-2 cells and extensin isolated in a similar way from cultures of tobacco XD-6S cells rendered the cortical MTs in protoplasts resistant to cold. Extensin at 0.1 mg·ml−1 was as effective as the cell wall in this respect. It is probable that extensin in the cell wall plays an important role in stabilizing cortical MTs in tobacco BY-2 cells.  相似文献   

9.
Ramachandran S  Cerione RA 《Biochemistry》2004,43(27):8778-8786
The GTP-binding protein (G protein), transducin, serves as a key molecular switch in vertebrate vision through the tight regulation of its GTP-binding (activation)/GTP hydrolytic (deactivation) cycle by the photoreceptor rhodopsin. To better understand the structure-function characteristics of transducin activation, we have set out to identify spectroscopic probes that bind to the guanine nucleotide-binding site of this G protein and maintain its ability to interact with its specific cellular target/effector, the cyclic GMP phosphodiesterase (PDE). In this study, we describe the characterization of a fluorescently labeled GTP analogue, BODIPY-FL GTPgammaS (BOD-GTPgammaS), that binds to the alpha subunit of transducin (alpha(T)) in a rhodopsin- and Gbetagamma-dependent manner, similar to the binding of GTP or GTPgammaS, with an apparent dissociation constant of 100 nM. The rhodopsin-dependent binding of BOD-GTPgammaS to alpha(T) is slow, relative to the rate of binding of GTPgammaS, particularly under conditions where rhodopsin must act catalytically to stimulate the exchange of BOD-GTPgammaS for GDP on multiple alpha(T) subunits. This reflects a slower rate of dissociation of rhodopsin and Gbetagamma from alpha(T)-BOD-GTPgammaS complexes, relative to their rates of dissociation from alpha(T)-GTPgammaS. The binding of BOD-GTPgammaS occurs without a change in the intrinsic tryptophan fluorescence of alpha(T), indicating that only a subtle movement of the Switch 2 domain on alpha(T) accompanies the binding of this GTPgammaS analogue. Nevertheless, the BOD-GTPgammaS-bound alpha(T) subunit is able to bind with high affinity to the recombinant, purified gamma subunit of PDE (gamma(PDE)) labeled with 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS (K(d) approximately 13 nM)), as well as bind to and stimulate the activity of PDE, albeit less efficiently compared to alpha(T)-GTPgammaS. Taken together, these findings suggest that the binding of BOD-GTPgammaS to transducin causes it to adopt a distinct conformation that appears to be intermediate between the inactive and fully active states of alpha(T), and this fluorescent nucleotide analogue can be used as a reporter group to characterize the interactions of alpha(T) in this conformational state with its biological target/effector.  相似文献   

10.
In a search for crystallizing conditions for the ternary complex EF-Tu.GTP.valyl-tRNAval, the influence of various salts on its stability has been examined by measuring the rate of deacylation of the aminoacyl-tRNA in the complex. The most striking result is the general higher stability in solutions of ammonium salts and, in particular, the enhancement of this effect by sulphate and citrate. Thus sodium sulphate and citrate lead to destabilization of the complex, as expected from conventional considerations of adding salt, whereas the corresponding ammonium salts stabilize the complex as shown, for example, by an increase in the half-life of the valyl-tRNAval in the complex from about 20 hours to at least 300 hours in the presence of 1.2 M ammonium sulphate. These results suggest that ammonium sulphate and ammonium citrate might be very suitable precipitants for crystallization studies of the ternary complex.  相似文献   

11.
This review discusses the possible role of alpha-tubulin detyrosination, a reversible post-translational modification that occurs at the protein's C-terminus, in cellular morphogenesis. Higher eukaryotic cells possess a cyclic post-translational mechanism by which dynamic microtubules are differentiated from their more stable counterparts; a tubulin-specific carboxypeptidase detyrosinates tubulin protomers within microtubules, while the reverse reaction, tyrosination, is performed on the soluble protomer by a second tubulin-specific enzyme, tubulin tyrosine ligase. In general, the turnover of microtubules in undifferentiated, proliferating cells is so rapid that the microtubules accumulate very little detyrosinated tubulin; that is, they are enriched in tyrosinated tubulin. However, an early event common to at least three well-studied morphogenetic events--myogenesis, neuritogenesis, and directed cell motility--is the elaboration of a polarized array of stable microtubules that become enriched in detyrosinated tubulin. The formation of this specialized array of microtubules in specific locations in cells undergoing morphogenesis suggests that it plays an important role in generating cellular asymmetries.  相似文献   

12.
In our studies with purified soluble guanylate cyclase from rat lung, we have tested a number of guanosine 5'-triphosphate (GTP) analogues as substrates and inhibitors, 5'-Guanylylimidodiphosphate (GMP-P(NH)P), guanylyl (beta, gamma-methylene) diphosphate (GMP-P(CH2)P), and guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) were found to be substrates for guanylate cyclase. GTP gamma S supported cyclic GMP formation at 20 or 75% of the rate seen with Mn2+-GTP and Mg2+-GTP, respectively. GMP-P(NH)P and GMP P(CH2)P supported cyclic GMP formation at 10-20% of the GTP rate with either cation cofactor. These analogues were found to have multiple Km values; one Km value was similar to GTP (150 microM with Mg2+, 20-70 microM with Mn2+), but an additional high affinity catalytic site (3 microM) was also observed. Guanosine tetraphosphate (Ki = 10 microM), adenosine triphosphate (Ki = 9 microM) and the 2'3'-dialdehyde derivative of GTP (dial GTP) (Ki = 1 microM) were not good substrates for the enzyme; however, they were potent competitive inhibitors. These GTP analogues will be useful tools for the study of GTP binding sites on guanylate cyclase and they may also help elucidate the effects of free radicals and other agents on guanylate cyclase regulation.  相似文献   

13.
Fluorescent imaging of cytoskeletal structures permits studies of both organization within the cell and dynamic reorganization of the cytoskeleton itself. Traditional fluorescent labels of microtubules, part of the cytoskeleton, have been used to study microtubule localization, structure, and dynamics, both in vivo and in vitro. However, shortcomings of existing labels make imaging of microtubules with high precision light microscopy difficult. In this paper, we report a new fluorescent labeling technique for microtubules, which involves a GTP analog modified with a bright, organic fluorophore (TAMRA, Cy3, or Cy5). This fluorescent GTP binds to a specific site, the exchangeable site, on tubulin in solution with a dissociation constant of 1.0±0.4 μM. Furthermore, the label becomes permanently incorporated into the microtubule lattice once tubulin polymerizes. We show that this label is usable as a single molecule fluorescence probe with nanometer precision and expect it to be useful for modern subdiffraction optical microscopy of microtubules and the cytoskeleton.  相似文献   

14.
15.
We synthesized 27 GTP analogues with modification or substitution at positions C2, C6, C8 and ribose moiety to investigate their effect on microtubule (Mt) assembly. It was found that C2 and C6 are both functional for the analogues supporting Mt assembly. It was surprising to find that 2-amino- ATP (n2ATP) substantially supports assembly, and that the appearance of the assembled Mts was indistinguishable from those assembled in the standard GTP assembly buffer solution. Furthermore, 2-amino dATP and dGTP are even more potent than GTP in supporting assembly. The substitution of oxo group at C6 with reactive thiol largely reduced the activity of the analogue to support assembly. When free rotation of the glycosidic linkage of GTP was blocked by the introduction of sulfur atom between C8 and C2' of ribose moiety, it resulted in total suppression of assembly. Purine nucleoside triphosphate was found to support assembly better than GTP, and even more efficient was 2-amino purine nucleoside triphosphate. Interestingly, their deoxy-type analogues were totally inhibitory. Although 2-amino 8-hydroxy ATP and other analogues supported assembly much better than did GTP, their diphosphate analogues were totally incapable of supporting assembly. Finally, bulky fluorescent probes were introduced at C3' of ribose moiety (Mant-8-Br-GTP or Mant-GTP) to visualize the fluorescent signal in assembled Mts. Even in this case, the number of most protofilaments was found to be 14, consistent with that found in Mts assembled in GTP standard buffer solution.  相似文献   

16.
Mutations in copper/zinc superoxide dismutase 1 (SOD1), a genetic cause of human amyotrophic lateral sclerosis, trigger motoneuron death through unknown toxic mechanisms. We report that transgenic SOD1G93A mice exhibit striking and progressive changes in neuronal microtubule dynamics from an early age, associated with impaired axonal transport. Pharmacologic administration of a microtubule-modulating agent alone or in combination with a neuroprotective drug to symptomatic SOD1G93A mice reduced microtubule turnover, preserved spinal cord neurons, normalized axonal transport kinetics, and delayed the onset of symptoms, while prolonging life by up to 26%. The degree of reduction of microtubule turnover was highly predictive of clinical responses to different treatments. These data are consistent with the hypothesis that hyperdynamic microtubules impair axonal transport and accelerate motor neuron degeneration in amyotrophic lateral sclerosis. Measurement of microtubule dynamics in vivo provides a sensitive biomarker of disease activity and therapeutic response and represents a new pharmacologic target in neurodegenerative disorders.  相似文献   

17.
We have developed an assay to monitor the assembly of the COPII coat onto liposomes in real time. We show that with Sar1pGTP bound to liposomes, a single round of assembly and disassembly of the COPII coat lasts a few seconds. The two large COPII complexes Sec23/24p and Sec13/31p bind almost instantaneously (in less than 1 s) to Sar1pGTP-doped liposomes. This binding is followed by a fast (less than 10 s) disassembly due to a 10-fold acceleration of the GTPase-activating protein activity of Sec23/24p by the Sec13/31p complex. Experiments with the phosphate analogue BeFx suggest that Sec23/24p provides residues directly involved in GTP hydrolysis on Sar1p.  相似文献   

18.
Microtubules were assembled from purified tubulin in the buffer originally used to study dynamic instability (100 mM PIPES, 2 mM EGTA, 1 mM magnesium, 0.2 mM GTP) and then diluted in the same buffer to study the rate of disassembly. Following a 15-fold dilution, microtubule polymer decreased linearly to about 20% of the starting value in 15 sec. We determined the length distribution of microtubules before dilution, and prepared computer simulations of polymer loss for different assumed rates of disassembly. Our experimental data were consistent with a disassembly rate per microtubule of 60 microns/min. This is the total rate of depolymerization for microtubules in the rapid shortening phase, as determined by light microscopy of individual microtubules (Walker et al.: Journal of Cell Biology 107:1437-1448, 1988). We conclude, therefore, that microtubules began rapid shortening at both ends upon dilution. Moreover, since we could detect no lag between dilution and the onset of rapid disassembly, the transition from elongation to rapid shortening apparently occurred within 1 sec following dilution. Assuming that this transition (catastrophe) involves the loss of the GTP cap, and that cap loss is achieved by the sequential dissociation of GTP-tubulin subunits following dilution, we can estimate the maximum size of the cap based on the kinetic data and model interpretation of Walker et al. The cap is probably shorter than 40 and 20 subunits at the plus and minus ends, respectively.  相似文献   

19.
The dynamics of astral and midzone microtubules (MTs) must be separately regulated during cell division, but the mechanism of selective stabilization of midzone MTs is poorly understood. Here we show that, in HT1080 cells, activation of Rho is required to stabilize midzone MTs, and to maintain the midzone structures after anaphase onset or during cytokinesis. Ect2-depleted cells undergoing conventional cytokinesis (cytokinesis A) or contractile ring-independent cytokinesis (cytokinesis B) formed abnormally thin bundles of midzone MTs. C3-loaded mitotic cells with inactivated Rho showed similar but more severe disorganization of midzone MTs. In addition, the bundles of astral MTs were abnormally abundant along the cell periphery in both Ect2-depleted and C3-loaded mitotic cells. Mitotic kinesin-like protein 1 (MKLP1), a component of the spindle midzone required for bundling of MTs, was localized only in the narrower equatorial regions in Ect2-depleted cells, and disappeared from the midzone accompanying the progression of the mitotic phase in C3-loaded cells. Stabilization of MTs by taxol was sufficient to maintain the midzone structures in C3-loaded mitotic cells. These results, when combined with a preceding analysis on another, microtubule-associated Rho GEF (C.J. Bakal, D. Finan, J. LaRose, C.D. Wells, G. Gish, S. Kulkarni, P. DeSepulveda, A. Wilde, R. Rottapel, The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 9529–9534), suggest that mammalian cells have two potential steps that require active Rho for the stabilization of midzone MTs during mitosis and cytokinesis.  相似文献   

20.
M Tsuda  T Tsuda  H Hirata 《FEBS letters》1989,257(1):38-40
Light-induced phosphorylation of octopus rhodopsin in microvillar membrane was shown to be stimulated by cyclic nucleotides in contrast to vertebrate rhodopsin kinase. Non-hydrolyzable GTP analogues, GTP lambda S and GppNHp, greatly enhanced the light-induced phosphorylation of octopus rhodopsin, but the non-hydrolyzable GDP analogue, GDP beta S, was not effective. These results suggest that rhodopsin A-kinase is involved in regulating the interaction between rhodopsin and G-protein in octopus photoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号