首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the phenolic glycoside, salicin, on food intake of the common brushtail possum (Trichosurus vulpecula) was studied in a series of feeding experiments. Increasing the concentration of salicin in a diet of fruits and cereals led to significant reductions of food intake in the short term (6 days). After prolonged (20 days) exposure to salicin, food intake (19 g kg−0.75 day−1) was still reduced relative to controls (31 g kg−0.75 day−1) but not reduced to the same extent as in the short-term experiments. Nonetheless, over these 20 days, common brushtail possums regulated their intake of salicin so as not to exceed a threshold limit of 1.9 ± 0.1 g kg−0.75 day−1. Manipulative experiments sought to determine whether this threshold intake was in response to pre-ingestive factors (taste) or the post-ingestive consequences of ingesting salicin. Dietary salicin (0.17–5.0% DM) had no significant effect on nitrogen balance or urea metabolism and injection of a specific serotonin receptor antagonist, ondansetron, did not lead to increases in salicin intake as has been found for some other plant secondary metabolites. Similarly, administration of 1.3 g salicin by gavage had no significant effect on the subsequent intake of salicin compared to controls that were gavaged with water. We concluded that pre-ingestive factors were responsible for common brushtail possums limiting their intake of salicin-rich diets rather than any measurable post-ingestive consequence of feeding. Accepted: 7 December 1999  相似文献   

2.
Nitrogen (N) and energy (E) requirements of the phyllostomid fruit bat, Artibeus jamaicensis, and the pteropodid fruit bat Rousettus aegyptiacus, were measured in adults that were fed on four experimental diets. Mean daily food intake by A. jamaicensis and R. aegyptiacus ranged from 1.1–1.6 times body mass and 0.8–1.0 times body mass, respectively. Dry matter digestibility and metabolizable E coefficient were high (81.1% and 82.4%, respectively) for A. jamaicensis and (77.5% and 78.0%, respectively) for R. aegyptiacus. Across the four diets, bats maintained constant body mass with mean metabolizable E intakes ranging from 1357.3 kJ · kg−0.75 · day−1 to 1767.3 kJ · kg−0.75 · day−1 for A. jamaicensis and 1282.6–1545.2 kJ · kg−0.75 · day−1 for R. aegyptiacus. Maintenance E costs were high, in the order of 3.6–5.4 times the basal metabolic rate (BMR). It is unlikely that the E intakes that we observed represent a true measure of maintenance E requirements. All evidence seems to indicate that fruit bats are E maximizers, ingesting more E than required and regulating storage by adjusting metabolic output. We suggest that true maintenance E requirements are substantially lower than what we observed. If it follows the eutherian norm of two times the BMR, fruit bats must necessarily over-ingest E on low-N fruit diet. Dietary E content did affect N metabolism of A. jamaicensis. On respective low- and high-E diets, metabolic fecal N were 0.492 mg N · g−1 and 0.756 mg N · g−1 dry matter intake and endogenous urinary N losses were 163.31 mg N · kg−0.75 · day−1 and 71.54 mg N · kg−0.75 · day−1. A. jamaicensis required 332.3 mg · kg−0.75 · day−1 and 885.3 mg · kg−0.75 · day−1 of total N on high- and low-E diets, respectively, and 213.7 mg · kg−0.75 · day−1 of truly digestible N to achieve N balance. True N digestibilities were low (29% and 49%) for low- and high-E diets, respectively. For R. aegyptiacus, metabolic fecal N and endogenous urinary N losses were 1.27 mg N · g−1 dry matter intake and 96.0 mg N · kg−0.75 · day−1, respectively, and bats required 529.8 mg · kg−0.75 · day−1 (total N) or 284.0 mg · kg−0.75 · day−1 (truly digestible N). True N digestibility was relatively low (50%). Based on direct comparison, we found no evidence that R. aegyptiacus exhibits a greater degree of specialization in digestive function and N retention than A. jamaicensis. When combined with results from previous studies, our results indicate that all fruit bats appear to be specialized in their ability to retain N when faced with low N diet. Accepted: 24 November 1998  相似文献   

3.
Omnivores such as the greater bilby (Macrotis lagotis) consume a variety of dietary items and often are faced with large changes in the nutrient composition of their food. This paper explores the basis for the dietary flexibility of the bilby by comparing digestive performance and digesta retention patterns of captive bilbies fed either an insect diet (mealworm larvae) or a plant diet (mixed seeds). Mean retention times (MRTs) of particle and solute markers in the gastrointestinal tract did not differ significantly between the two diets, but MRT of the particle marker was significantly longer than that of the solute marker on both the mealworm (particle: 23.5 h; solute: 17.9 h) and mixed seed (particle 33.0 h; solute: 30.2 h) diets. Lack of selective retention of solutes and small particles in the bilby gastrointestinal tract probably restricts them to relatively low-fibre diets, such as those based on seeds rather than leaves and stems of plants. It was observed radiographically that the major sites of digesta retention were the caecum, proximal colon and distal colon, and thus the hindgut is probably the principal site of microbial fermentation. The mealworms were more digestible than the mixed seeds, but digestible energy intake (mealworm: 939 kJ · kg−0.75 · d−1; mixed seed: 629 kJ · kg−0.75 · d−1) was high enough for maintenance of body mass and positive nitrogen balance on both diets. Thus, although bilbies may be limited in their ability to utilize high-fibre diets by a lack of selective retention of solutes and small particles in their hindgut, their digestive strategy is flexible enough to accommodate at least some diets of both animal and plant origin. Such a strategy should benefit an animal inhabiting environments in which food resources are unpredictable in their relative abundance. Accepted: 26 May 2000  相似文献   

4.
A plant-specific biogenic amine, serotonin, was produced by heterologous expression of two key biosynthetic genes, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H), in Escherichia coli. The native T5H, a cytochrome P450 enzyme, was unable to be functionally expressed in E. coli. Through a series of N-terminal deletions or additions of tagging proteins, we generated a functional T5H enzyme construct (GST∆37T5H) in which glutathione S transferase (GST) was translationally fused with the N-terminal 37 amino acid deleted T5H. Dual expression of GST∆37T5H and TDC using a pCOLADuet-1 E. coli vector produced serotonin at concentrations of approximately 24 mg l−1 in the culture medium and 4 mg l−1 in the cells. An optimum temperature of approximately 20°C was required to achieve peak serotonin production in E. coli because the low induction temperature gave rise to the highest soluble expression of GST∆37T5H.  相似文献   

5.
Asparagus racemosus is an important monocot medicinal plant that is in great demand for its steroidal saponins called shatavarins. This study was initiated to optimize the conditions for production of shatavarins in cell cultures of A. racemosus in a modified Murashige and Skoog (MS) medium supplemented with six different combinations of growth regulators. Biomass accumulation was correlated with saponin production over a 30-d culture cycle. Biomass and saponin accumulation patterns were dependent on combinations of growth regulators and the pH of the medium. Maximum levels of saponin and biomass accumulation were recorded on day 25 of the culture cycle within a pH range of 3.4 to 5.6. Total saponin produced by the in vitro cultures was 20-fold higher than amounts produced by cultivated plants. Saponin accumulation was not a biomass-associated phenomenon; cultures which showed the highest biomass accumulation were not the highest saponin accumulators. Maximum biomass (28.30 ± 0.29 g l−1) and maximum levels of shatavarin IV(11.48 ± 0.61 mg g−1) accumulation was found using a medium containing 2.0 mg l−1 2,4-D, 2 g l−1 casein hydrolysate and 0.005% pectinase. The highest levels of sarsapogenin, secreted and intracellular (4.02 ± 0.09 mg g−1), accumulated using a medium containing 1.0 mg l−1 NAA, 1.0 mg l−1 2,4-D, 0.5 mg l−1 BAP, 2 g l−1 casein hydrolysate and 0.005% pectinase, after 25 d. Shatavarins were secreted into the medium and can be isolated easily for further purification.  相似文献   

6.
Drinking in Atlantic salmon (Salmo salar) juveniles was investigated in fresh water and following transfer to sea water. There was a significant effect of fish size on drinking, and smolts (20–30 g) imbibed about ten times less water than alevins of 0.2–0.3 g. Freshwater smolts drank at a rate of 0.15 ± 0.03 ml · kg−1 · h−1 and administration of doses of 10 or 20 mg · kg−1 of papaverine (stimulator of the renin- angiotensin system RAS) or [Asn1, Val5]-Angiotensin II (0.4 μmol · kg−1) resulted in significant increases in drinking, while administration of the angiotensin converting enzyme inhibitor, enalapril (50 mg · kg−1) had no effect on drinking. Transfer of Atlantic salmon smolts to 1/3, 2/3 and full strength sea water resulted in significant increases in drinking to 1.06 ± 0.12, 1.24 ± 0.0.16 and 3.89 ± 0.28 ml · kg−1 · h−1, respectively. In sea water, stimulation of the endogenous RAS by administration of papaverine (20 mg · kg−1) resulted in a 20% increase in drinking, while administration of enalapril to doses of 50 and 200 mg · kg−1 lowered drinking to 1.99 ± 0.48 and 0.32 ± 0.06 ml · kg−1 · h−1, respectively. All treatments were without effect on blood plasma levels of Na+ and Cl in fresh water, while in sea water smolts both stimulation and inhibition of drinking resulted in hemoconcentration of Na+ and Cl. The role of the renin angiotensin system in control of drinking and hydromineral balance in Atlantic salmon is discussed. Accepted: 27 February 1997  相似文献   

7.
Hypoxia caused by eutrophication occurs over large areas in aquatic systems worldwide. Common carp (Cyprinus carpio) exposed to hypoxia (1 mg · O2 · l−1 and 2 mg · O2 · l−1) for 1 week showed a significant reduction in feeding rate, respiration rate, faecal production and nitrogenous excretion compared to those maintained at normoxia (7 mg · O2 · l−1). Fish exposed to hypoxia showed negative scope for growth (SfG), but no significant difference in the specific growth rate was revealed after 1 week in both hypoxic groups. A significant reduction in RNA/DNA ratio was, however, clearly evident in the white muscle of the 1 mg · O2 · l−1 treatment group, but not in the 2 mg · O2 · l−1 treatment group. Both specific growth rate and RNA/DNA ratio were significantly reduced when fish were exposed to severe hypoxia (0.5 mg · O2 · l−1) for 4 weeks. At all levels of hypoxia, growth reduction was accompanied by a significant decrease in RNA/DNA ratio in white muscle. Covariance analysis showed no significant difference between the slope of RNA/DNA ratio and growth rate under normoxic conditions and 0.5 mg · O2 · l−1 for 4 weeks (F=1.036, P > 0.326), as well as 1.0 mg · O2 · l−1 and 2.0 mg · O2 · l−1 for 1 week (F = 0.457, P > 0.5), indicating that the RNA/DNA ratio serves as a biomarker of growth under all oxygen levels, at least under controlled experimental conditions. SfG also appears to be more sensitive than the RNA/DNA ratio in responding to hypoxia in fish. Accepted: 15 September 2000  相似文献   

8.
The physiological roles of omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid have been investigated in detail and microbial strains producing these polyunsaturated fatty acids have been characterised. It has recently been suggested that docosapentaenoic acid may have an important role, especially in infant nutrition, and that its positive health effects have been overlooked. Docosapentaenoic acid (C22:5, ω-3) production by a strain of Pythium acanthicum ATCC 18660 was thus investigated. Optimum conditions for growth of P. acanthicum ATCC 18660 and docosapentaenoic acid production were: pH 6.0, temperature 20°C and incubation time, 10 days. Among different saccharides and complex nitrogen sources tested, glucose and sodium glutamate were preferred carbon and nitrogen sources, respectively. Maximum biomass content (10.4 g L−1) and docosapentaenoic acid yield (49.9 mg L−1) were obtained in 10 days. An increase in docosapentaenoic acid volumetric yields to 108–110 mg L−1 was obtained when linseed oil was used to supplement glucose or soy flour-containing medium. Batch feeding of additional glucose or linseed oil further enhanced the docosapentaenoic acid volumetric yield to 132 mg L−1 and 125 mg L−1, respectively, in 14 days. The specific production of docosapentaenoic acid in preliminary experiments ranged from 1.0–5.0 mg g−1 biomass. As conditions were optimised, docosapentaenoic acid specific production titers were generally in the range of 4.0–5.5 mg g−1 and increases in docosapentaenoic acid volumetric production could be attributed to increased biomass production. The limited improvement obtained by modifying culture conditions indicates that increasing volumetric yields of docosapentaenoic acid by modifying culture conditions appears to represent a significant barrier to commercialisation of such a process and suggests a more fundamental manipulation of metabolism and physiology is required. Received 06 November 1997/ Accepted in revised form 10 January 1998  相似文献   

9.
The toxic effects of artesunate and dihydroartemisinin on the growth metabolism of Tetrahymena thermophila BF5 were studied by microcalorimetry. The results showed that: (1) low concentrations of artesunate (≤1 mg L−1) and dihydroartemisinin (≤ 2 mg L−1) promoted the growth metabolism of T. thermophila BF5, whereas high concentrations of artesunate (1–60 mg L−1) and dihydroartemisinin (2–60 mg L−1) inhibited its growth; (2) the half inhibition concentrations IC50 of artesunate and dihydroartemisinin were 17.5817 and 9.5089 mg L−1, respectively. It was concluded that the inhibition of dihydroartemisinin was stronger than that of artesunate.  相似文献   

10.
In order to provide a better understanding of the dynamics of phytoplankton in the coastal regions of high latitudes, a study was carried out to estimate the dynamics of carbon biomass of autotrophic and heterotrophic algal groups over the austral spring-summer 1997/1998 period. At a fixed station located in the central basin (Paso Ancho) of the Straits of Magellan (53°S), surface water samples were collected at least once a week from September 1997 (early spring) to March 1998 (late summer). Quantitative analysis of biomass of phytoplankton was estimated from geometric volumes, using non-linear equations, and converted to biomass. The pattern of chlorophyll a showed a strong temporal variability, with maximum values (mean 2.8 mg m−3) at the austral spring phytoplankton increase or bloom (October/November) and minimum values during early spring (September: <0.5 mg m−3) and summer (January/March: 0.5–1.0 mg m−3). During the spring bloom, diatoms made up to 90% of the total phytoplankton carbon (0.01–189 μg l−1), followed by a maximum of thecate dinoflagellates (0.08–34 μg l−1), and sporadic high biomass of phytoflagellates during summer. Heterotrophic algal groups such as Gymnodinium and Gyrodinium spp. dominated (70%, in the 5- to 25-μm size range) shortly before the main diatom bloom, and small peaks were observed within spring and early summer periods (0–0.4 μg l−1). Phytoflagellates dominated earlier (spring) with higher carbon biomass (8 μg l−1) and post-bloom periods (summer) when carbon biomass ranged between 1 and 4 μg l−1. Accepted: 6 September 2000  相似文献   

11.
The influence of increasing concentrations (0.1, 1.0 and 5.0 mg l−1) of fluoranthene (FLT) on growth, endogenous abscisic acid (ABA) level and primary photosynthetic processes in 21-day-old pea plants (Pisum sativum L.) in vitro was investigated. Murashige and Skoog’s (MS) medium, with or without FLT, was enriched with indole-3-acetic acid (IAA; 0.1 mg l−1) or a combination of IAA (0.1 mg l−1) plus N6-benzyladenine (BA; 0.1 mg l−1). The level of endogenous ABA significantly increased with increasing FLT concentrations in the presence of both IAA and IAA plus BA. An increased level of endogenous ABA was observed in plants treated with IAA alone. The growth of shoot, callus and the content of photosynthetic pigments (chlorophyll a and b, carotenoids), in both IAA- and IAA plus BA-treated plants, were significantly stimulated by FLT at its lowest concentration (0.1 mg l−1) assayed in this study. However, FLT at higher concentrations (1.0 and 5.0 mg l−1) significantly inhibited all these parameters. Chlorophyll fluorescence imaging showed that FLT only at the highest concentration (5.0 mg l−1) in the presence of IAA (0.1 mg l−1) significantly increased F0, but decreased FV/FM and ΦII.  相似文献   

12.
Birds on migration often alternate between feeding and nonfeeding periods, in part because food resources may be patchily distributed and in part because birds on migration may adopt a risk-prone foraging strategy characterized by selection of variable rather than constant food rewards. Optimal digestion models predict that increases in intermeal interval like those encountered by some migratory birds should result in longer retention time of digesta and higher digestive efficiency if birds are maximizing their rate of energy intake. We tested these predictions by comparing residence time of digesta and extraction efficiency of lipid for captive yellow-rumped warblers (Dendroica coronata) feeding adlibitum and when we added intervals of time when the birds received no food. We increased the likelihood that the warblers were maximizing their rate of energy intake by increasing light levels during spring to induce hyperphagia (treatment birds (16L:8D light: dark cycle) ate 2.13 ± 0.14 g dry food day−1 (n = 8) while control birds (10L:14D) ate 1.25 ± 0.03 g dry food day−1 (n = 6)). Treatment birds offered food only every other 2–3 h ate 50% more during the 4-h test period than when they were always feeding adlibitum. Despite these differences in food intake, extraction efficiency of glycerol trioleate remained high and constant (93%), and mouth-to-anus total mean retention time (TMRT) did not change (overall mean: 54.8 ± 6.0 min). Residence time of lipid in the stomach increased whereas residence time of lipid in the intestine decreased when birds fed only every other 2–3 h compared to when birds always fed ad libitum. None of the results were consistent with the predictions of the optimal digestion model unless we assume that birds were minimizing their feeding time rather than maximizing their rate of energy gain. Furthermore, the ability of yellow-rumped warblers to maintain high extraction efficiency with no change in TMRT suggests some spare digestive capacity when food intake increases by as much as 50%. Received: 14 June 1997 / Accepted: 20 November 1997  相似文献   

13.
Toxic at low concentrations, phenol is one of the most common organic pollutants in air and water. In this work, phenol biodegradation was studied in extreme conditions (80°C, pH = 3.2) in a 2.7 l bioreactor with the thermoacidophilic archaeon Sulfolobus solfataricus 98/2. The strain was first acclimatized to phenol on a mixture of glucose (2000 mg l−1) and phenol (94 mg l−1) at a constant dissolved oxygen concentration of 1.5 mg l−1. After a short lag-phase, only glucose was consumed. Phenol degradation then began while glucose was still present in the reactor. When glucose was exhausted, phenol was used for respiration and then for biomass build-up. After several batch runs (phenol < 365 mg l−1), specific growth rate (μX) was 0.034 ± 0.001 h−1, specific phenol degradation rate (qP) was 57.5 ± 2 mg g−1 h−1, biomass yield (YX/P) was 52.2 ± 1.1 g mol−1, and oxygen yield factor ( \textY\textX/\textO 2 ) \left( {{\text{Y}}_{{{\text{X}}/{\text{O}}_{ 2} }} } \right) was 9.2 ± 0.2 g mol−1. A carbon recovery close to 100% suggested that phenol was exclusively transformed into biomass (35%) and CO2 (65%). Molar phenol oxidation constant ( \textY\textO 2 /\textP ) \left( {{\text{Y}}_{{{\text{O}}_{ 2} /{\text{P}}}} } \right) was calculated from stoichiometry of phenol oxidation and introducing experimental biomass and CO2 conversion yields on phenol, leading to values varying between 4.78 and 5.22 mol mol−1. Respiratory quotient was about 0.84 mol mol−1, very close to theoretical value (0.87 mol mol−1). Carbon dioxide production, oxygen demand and redox potential, monitored on-line, were good indicators of growth, substrate consumption and exhaustion, and can therefore be usefully employed for industrial phenol bioremediation in extreme environments.  相似文献   

14.
 Nitrogen (N) and energy (E) requirements were measured in adult Carollia perspicillata which were fed on four experimental diets. Bats ate 1.3–1.8 times their body mass ⋅ day-1 and ingested 1339.5–1941.4 kJ ⋅ kg-0.75 ⋅ day-1. Despite a rapid transit time, dry matter digestibility and metabolizable E coefficient were high (83.3% and 82.4%, respectively), but true N digestibility was low (67.0%). Mass change was not correlated with E intake, indicating that bats adjusted their metabolic rate to maintain constant mass. Bats were able to maintain constant mass with digestible E intake as low as 1168.7 kJ ⋅ kg-0.75 ⋅ day-1 or 58.6 kJ ⋅ . Metabolic fecal N and endogenous urinary N losses were 0.87 mg N ⋅ g-1 dry matter intake and 172.5 mg N ⋅ kg-0.75 ⋅ day-1, respectively, and bats required 442 mg N ⋅ kg-0.75 ⋅ day-1 (total nitrogen) or 292.8 mg N ⋅ kg-0.75 ⋅ day-1 (truly digestible nitrogen) for N balance. Based on E and N requirements and digestibilities, it was calculated that non-reproductive fruit bats were able to meet their N requirements without resorting to folivory and without over-ingesting energy. It was demonstrated that low metabolic fecal requirements allowed bats to survive on low-N diets. Accepted: 23 June 1996  相似文献   

15.
Traditional approaches to the question of the effects of plant secondary metabolites on the feeding choices of folivores of Eucalyptus have focused on the tree species level, although numerous field studies of foraging behaviour have identified selection at the level of the individual trees. Attempts to relate these decisions to deterrency resulting from secondary leaf chemistry have been inconclusive because assays used have focused on broad groups of compounds such as “total” phenolics. In this study we have conducted no-choice feeding trials with two arboreal mammalian folivores, the common ringtail possum (Pseudocheirus peregrinus) and the koala (Phascolarctos cinereus), to measure deterrency of individual trees of two species of Eucalyptus, E. ovata and E. viminalis. Average daily intakes of E. ovata foliage by common ringtail possums ranged from 2.5 to 50 g kg−0.75 body mass. Koala intakes of foliage from the same individual trees ranged from 22.4 to 36.3 g kg−0.75 body mass. When fed foliage from different individual E. viminalis trees, common ringtail possums ate between 1.26 and 6.28 g kg−0.75 body mass while koalas ate from 14.3 to 45.9 g kg−0.75 body mass. Correlative analyses showed no relationships between feeding and several measures of nutritional quality, nor with total phenolics or condensed tannins. They did, however, identify two groups of plant secondary metabolites that may cause deterrency: terpenes, and a defined group of phenolic compounds, the diformylphloroglucinols (DFPs). Further bioassay experiments with common ringtail possums showed that only the DFPs could cause the effects seen with the foliage experiments at concentrations similar to those found in the leaves. We argue that, when in sufficiently high concentrations, DFPs determine the level of food intake by these animals irrespective of other questions of nutritional quality of the leaves. Received: 20 October 1997 / Accepted: 23 March 1998  相似文献   

16.
The influence of a CO2/HCO 3-buffered medium on intracellular pH regulation of gill pavement cells from freshwater rainbow trout was examined in monolayers grown in primary culture on glass coverslips; intracellular pH (pHi) was monitored by continuous spectrofluorometric recording from cells loaded with 2′,7′-bis(2-carboxyethyl)-5(6)-carboxy-fluoroscein. When cells in HEPES-buffered medium at normal pH=7.70 were transferred to normal CO2/HCO 3-buffered medium {P CO2=3.71 mmHg, [HCO 3]= 6.1 mmol l−1, extracellular pH (pHe)=7.70}, they exhibited a brief acidosis but subsequently regulated the same pHi (∼7.41) as in HEPES. Buffer capacity (β) increased by the expected amount (5.5–8.0 slykes) based on intracellular [HCO 3], and was unaffected by most drugs and treatments. However, after transfer to high P CO2=11.15 mmHg, [HCO 3]= 18.2 mmol l−1 at the same pHe=7.70, the final regulated pHi was elevated (∼7.53). The rate of correction of alkalosis caused by washout of this high P CO2, high-HCO 3 medium was unaffected by removal of extracellular Cl. Removal of extracellular Na+ lowered resting pHi and greatly inhibited the rate of pHi recovery from acidosis. Bafilomycin A1 (3 μmol l−1) had no effect on these responses. However amiloride (0.2 mmol l−1) inhibited recovery from acidosis caused by washout of an ammonia prepulse, but did not affect resting pHi, the latter differing from the response in HEPES where amiloride also lowered resting pHi. Similarly 4-acetamido-4′- isothiocyanatostilbene-2,2′-disulfonic acid, sodium salt (0.1 mmol l−1) did not affect resting pHi but slowed the rate of recovery from acidosis, though to a lesser extent than amiloride. Removal of extracellular Cl also slowed the rate of recovery but greatly increased β by an unknown mechanism; when this was taken into account, H+ extrusion rate was unaffected. These results are consistent with the presence of Na+-(HCO 3)N co-transport and/or Na+-dependent HCO 3/Cl exchange, in addition to Na+/H+ exchange, as mechanisms contributing to “housekeeping” pHi regulation in gill cells in CO2/HCO 3 media, whereas only Na+/H+ exchange is seen in HEPES. Both Na+-independent Cl/HCO 3 exchange and V-type H+-ATPase mechanisms appear to be absent from these cells cultured in isotonic media. Accepted: 30 November 1999  相似文献   

17.
Guo J  Zhou J  Wang D  Xiang X  Yu H  Tian C  Song Z 《Biodegradation》2006,17(4):341-346
Some experiments were conducted to study some electrochemical factors affecting the bacterial reduction (cleavage) of azo dyes, knowledge of which will be useful in the wastewater treatments of azo dyes. A common mixed culture was used as a test organism and the reductions of Acid Yellow 4, 11, 17 and Acid Yellow BIS were studied. It was found that the azo dyes were reduced at different rates, which could be correlated with the reduction potential of the azo compounds in cyclic voltammetric experiments. Acid Yellow BIS (E r − 616.75 mV) was reduced at the highest rate of 0.0284 mol g dry cell weight−1 h−1, Acid Yellow 11 (E r − 593.25 mV) at 0.0245 mol g dry cell weight−1 h−1 and Acid Yellow 4 (E r − 513 mV) at 0.0178 mol g dry cell weight−1 h−1. At the same time, the decolourization rate of Acid Yellow 17 (E r − 627.5 mV) was 0.0238 mol g dry cell weight−1 h−1, which was affected by the nature of chlorine substituent. Reduction of these azo dyes did not occur under aeration conditions. These studies with a common mixed culture indicate that the reduction of azo dyes may be influenced by the chemical nature of the azo compound. The reduction potential is a preliminary tool to predict the decolourization capacity of oxidative and reductive biocatalysts.  相似文献   

18.
Mesozooplankton (predominantly 200–2000 μm) were sampled at a shelf and an oceanic station close to South Georgia, South Atlantic, during austral spring (October/November) 1997. Onshelf zooplankton biomass was extremely high at 10–16 g dry mass m−2 (0–150 m), 70% comprising the small neritic clausocalaniid copepod Drepanopus forcipatus. Large calanoid species, principally Calanoides acutus and Rhincalanus gigas, contributed only 8–10%. At the oceanic station, biomass in the sampled water column (0–1000 m) was ∼6.5 g dry mass m−2 and 4–6 g dry mass m−2 in the top 200 m. Here, large calanoids composed 40–50% of the standing stock. Antarctic krill (Euphausia superba) occurred in low abundances at both stations. Vertical profiles obtained with a Longhurst Hardy Plankton Recorder indicated that populations of C. acutus and R. gigas, which overwinter at depth, had completed their spring ascent and were resident in surface waters. Dry mass, carbon and lipid values were lower than found in summer but were consistent with overwintered populations. Phytoplankton concentrations were considerably higher at the oceanic station (2–3 mg chlorophyll a m−3) and increased over the time on station. In response to this, egg production of both large calanoid species and growth rates of R. gigas approached those measured in summer. Onshelf phytoplankton concentrations were lower (<1 mg m−3), and low egg production rates suggested food limitation. Here phytoplankton rations equivalent to 6% zooplankton body C would have been sufficient to clear primary production whereas at the oceanic station daily carbon fixation was broadly equivalent to zooplankton carbon biomass. Accepted: 25 April 1999  相似文献   

19.
β-Endorphin (BE) infusion at rest can influence insulin and glucagon levels and thus may affect glucose availability during exercise. To clarify the effect of BE on levels of insulin, glucagon and glucose during exercise, 72 untrained male Sprague-Dawley rats were infused i.v. with either: (1) BE (bolus 0.05 mg · kg−1 +0.05 mg · kg−1 · h−1, n = 24); (2) naloxone (N, bolus 0.8 mg · kg−1 + 0.4 mg · kg−1, n = 24); or (3) volume-matched saline (S, n = 24). Six rats from each group were killed after 0, 60, 90 or 120 min of running at 22 m · min−1, at 0% gradient. BE infusion resulted in higher plasma glucose levels at 60 min [5.93 (0.32) mM] and 90 min [4.16 (0.29) mM] of exercise compared to S [4.62 (0.27) and 3.41 (0.26 mM] and N [4.97 (0.38) and 3.44 (0.25) mM]. Insulin levels decreased to a greater extent with BE [21.5 (0.9) and 18.3 (0.6) uIU · ml−1] at 60 and 90 min compared to S [24.5 (0.5) and 20.6 (0.6) uIU · ml−1] and N [24.5 (0.4) and 21.6 (0.7) uIU · ml−1] groups. Plasma C-peptide declined to a greater extent at 60 and 90 min of exercise with BE infusion compared to both S and N. BE infusion increased glucagon at all times during exercise compared to S and N. These data suggest that BE infusion during exercise influences plasma glucose by augmenting glucagon levels and attenuating insulin release. Accepted: 26 February 1997  相似文献   

20.
The present study questions whether hypothermia is an artifact due to captivity-induced stress or a thermoregulatory strategy for bats of the neotropical family Phyllostomidae. In Guanacaste, Costa Rica, Carollia perspicillata and Sturnira lilium exhibited a bimodal distribution of body temperatures when submitted to an ambient temperature of 21 °C. Body temperature was highly correlated with body mass in both species. C. perspicillata of mass ≥20 g and S. lilium of mass ≥17 g remained normothermic (body temperature >37 °C), whereas at masses below 18 g and 13 g, respectively, >80% of individuals were hypothermic (body temperature ≤32 °C). In two treatment groups for each species, we restricted food intake to ca. 20% of body mass on either night 1 or night 4 following capture. Hypothermia was significantly related to food-restriction, but not time in captivity. Metabolic rate (ml O2 ·  g−1 h−1) at ambient temperature = 21 °C was MR = e (–2.11 + 0.101 Tb) (r 2 = 0.7, P < 0.001) for C. perspicillata and MR = e (−2.62 + 0.115 Tb) (r 2 = 0.89) for S. lilium. Free-ranging, radio tagged C. perspicillata exhibited daily depression of body temperature to 33–34 °C. We conclude that hypothermia is an thermoregulatory strategy that allows phyllostomid bats to adjust metabolic rate to feeding success and the level of fat stores. Accepted: 20 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号