首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
p63: revving up epithelial stem-cell potential   总被引:3,自引:0,他引:3  
  相似文献   

4.
5.
Perp is a p63-regulated gene essential for epithelial integrity   总被引:10,自引:0,他引:10  
p63 is a master regulator of stratified epithelial development that is both necessary and sufficient for specifying this multifaceted program. We show here that Perp, a tetraspan membrane protein originally identified as an apoptosis-associated target of the p53 tumor suppressor, is the first direct target of p63 clearly involved in mediating this developmental program in vivo. During embryogenesis, Perp is expressed in an epithelial pattern, and its expression depends on p63. Perp-/- mice die postnatally, with dramatic blistering in stratified epithelia symptomatic of compromised adhesion. Perp localizes specifically to desmosomes, adhesion junctions important for tissue integrity, and numerous structural defects in desmosomes are observed in Perp-deficient skin, suggesting a role for Perp in promoting the stable assembly of desmosomal adhesive complexes. These findings demonstrate that Perp is a key effector in the p63 developmental program, playing an essential role in an adhesion subprogram central to epithelial integrity and homeostasis.  相似文献   

6.
7.
8.
9.
10.
Splitting p63   总被引:6,自引:0,他引:6       下载免费PDF全文
Causative TP63 mutations have been identified in five distinct human developmental disorders that are characterized by various degrees of limb abnormalities, ectodermal dysplasia, and facial clefts. The distribution of mutations over the various p63 protein domains and the structural and functional implications of these mutations establish a clear genotype-phenotype correlation.  相似文献   

11.
12.
Functional regulation of p73 and p63: development and cancer   总被引:18,自引:0,他引:18  
  相似文献   

13.
p63 and p73: roles in development and tumor formation   总被引:12,自引:0,他引:12  
The tumor suppressor p53 is critically important in the cellular damage response and is the founding member of a family of proteins. All three genes regulate cell cycle and apoptosis after DNA damage. However, despite a remarkable structural and partly functional similarity among p53, p63, and p73, mouse knockout studies revealed an unexpected functional diversity among them. p63 and p73 knockouts exhibit severe developmental abnormalities but no increased cancer susceptibility, whereas this picture is reversed for p53 knockouts. Neither p63 nor p73 is the target of inactivating mutations in human cancers. Genomic organization is more complex in p63 and p73, largely the result of an alternative internal promoter generating NH2-terminally deleted dominant-negative proteins that engage in inhibitory circuits within the family. Deregulated dominant-negative p73 isoforms might play an active oncogenic role in some human cancers. Moreover, COOH-terminal extensions specific for p63 and p73 enable further unique protein-protein interactions with regulatory pathways involved in development, differentiation, proliferation, and damage response. Thus, p53 family proteins take on functions within a wide biological spectrum stretching from development (p63 and p73), DNA damage response via apoptosis and cell cycle arrest (p53, TAp63, and TAp73), chemosensitivity of tumors (p53 and TAp73), and immortalization and oncogenesis (DeltaNp73).  相似文献   

14.
p63, known to play a role in development, has more recently also been implicated in cancer progression. Mutations in p63 have been shown to be responsible for several human developmental diseases. Differential splicing of the p63 gene gives rise to p63 isoforms, which can act either as tumor suppressors or as oncogene. In this report, we studied the effects of naturally occurring TAp637 mutants on the regulation of p53/p63 and p63 specific target genes. We observed significant differences among p63 mutants to regulate the p53/p63 and p63 specific target genes. Additionally, we observed a differential effect of p63 mutants on wildtype-p63-mediated induction ofp53/p63 and p63 specific target genes. We also demonstrated that these mutants differentially regulate the binding of wildtype p63 to the promoter of target genes. Furthermore, the effects of these mutants on cell death and survival were consistent with their ability to regulate the downstream targets when compared to wildtype TAp63T. In summary, our data demonstrate that p63 mutants exhibit differential effects on p63 and p53/p63 specific target genes and on the induction of apoptosis, and provide further insight into the function of p63.  相似文献   

15.
16.
The p53 family member p63 plays an essential role in the developing epithelium, and overexpression of the ΔNp63a isoform is frequently observed in human squamous cell carcinomas (SCCs). These findings have suggested that ΔNp63a might function as an oncogene within squamous epithelial cells. Nevertheless, the mechanism by which ΔNp63a might promote tumorigenesis remains poorly understood, and data from mouse models implies that the p63 locus might in fact function as a tumor suppressor in these same tissues. A recent study using RNA interference in human SCC-derived cell lines shows that ΔNp63a mediates an essential survival function in human SCC cells by virtue of its ability to suppress the pro-apoptotic function of the related p53 family member p73. These findings support an oncogenic role for ΔNp63a and they demonstrate the existence of critical physical and functional interactions between endogenous p53 family members in human cancer. Specific chemotherapeutic agents and future targeted approaches may be able to exploit this pathway to therapeutic advantage.  相似文献   

17.
18.
AbstractThe p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family. Facts
  • Distinct physiological roles/functions are performed by specific isoforms.
  • The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
  • Mdm2 binds to all three family members but ubiquitinates only p53.
  • TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
  • The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
  • Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
  • What is the physiological function of the p63/p73 SAM domains?
  • Do the short isoforms of p63 and p73 have physiological functions?
  • What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Subject terms: X-ray crystallography, Solution-state NMR  相似文献   

19.
p53 family update: p73 and p63 develop their own identities.   总被引:30,自引:0,他引:30  
  相似文献   

20.
From p63 to p53 across p73   总被引:14,自引:0,他引:14  
Most genes are members of a family. It is generally believed that a gene family derives from an ancestral gene by duplication and divergence. The tumor suppressor p53 was a striking exception to this established rule. However, two new p53 homologs, p63 and p73, have recently been described [1, 2, 3, 4, 5 and 6]. At the sequence level, p63 and p73 are more similar to each other than each is to p53, suggesting the possibility that the ancestral gene is a gene resembling p63/p73, while p53 is phylogenetically younger [1 and 2].

The complexity of the family has also been enriched by the alternatively spliced forms of p63 and p73, which give rise to a complex network of proteins involved in the control of cell proliferation, apoptosis and development [1, 2, 4, 7, 8 and 9].

In this review we will mainly focus on similarities and differences as well as relationships among p63, p73 and p53.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号