首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Since the tetraploidization of the Arabidopsis thaliana ancestor 30-35 million years ago (Mya), a wave of chromosomal rearrangements have modified its genome architecture. The dynamics of this process is unknown, as it has so far been impossible to date individual rearrangement events. In this paper, we present evidence demonstrating that the majority of rearrangements occurred before the Arabidopsis-Brassica split 20-24 Mya, and that the segmental architecture of the A. thaliana genome is predominantly conserved in Brassica. This finding is based on the conservation of four rearrangement breakpoints analysed by fluorescence in situ hybridization (FISH) and RFLP mapping of three A. thaliana chromosomal regions. For this purpose, 95 Arabidopsis bacterial artificial chromosomes (BACs) spanning a total of 8.25 Mb and 81 genetic loci for 36 marker genes were studied in the Brassica oleracea genome. All the regions under study were triplicated in the B. oleracea genome, confirming the hypothesis of Brassica ancestral genome triplication. However, whilst one of the breakpoints was conserved at one locus, it was not at the two others. Further comparison of their organization may indicate that the evolution of the hexaploid Brassica progenitor proceeded by several events, separated in time. Genetic mapping and reprobing with rDNA allowed assignment of the regions to particular Brassica chromosomes. Based on this study of regional organization and evolution, a new insight into polyploidization/diploidization cycles is proposed.  相似文献   

3.
Exposure to ionizing radiation results in a variety of genome rearrangements that have been linked to tumor formation. Many of these rearrangements are thought to arise from the repair of double-strand breaks (DSBs) by several mechanisms, including homologous recombination (HR) between repetitive sequences dispersed throughout the genome. Doses of radiation sufficient to create DSBs in or near multiple repetitive elements simultaneously could initiate single-strand annealing (SSA), a highly efficient, though mutagenic, mode of DSB repair. We have investigated the genetic control of the formation of translocations that occur spontaneously and those that form after the generation of DSBs adjacent to homologous sequences on two, non-homologous chromosomes in Saccharomyces cerevisiae. We found that mutations in a variety of DNA repair genes have distinct effects on break-stimulated translocation. Furthermore, the genetic requirements for repair using 300bp and 60bp recombination substrates were different, suggesting that the SSA apparatus may be altered in response to changing substrate lengths. Notably, RAD59 was found to play a particularly significant role in recombination between the short substrates that was partially independent of that of RAD52. The high frequency of these events suggests that SSA may be an important mechanism of genome rearrangement following acute radiation exposure.  相似文献   

4.
Effect of chromosomal rearrangements on the expression of mutations was studied in Drosophila melanogaster regulatory genes. These were facultative dominant lethals and recessive lethals on the X chromosome obtained by the classical Muller-5 method. Chromosomal rearrangements drastically changed the expression of regulatory gene mutations. Rearrangements either caused the lethal effect of mutations or suppressed the already present lethality. The action of rearrangements exhibited the maternal or paternal effect. Irrespective of the presence in the genome of mutations of regulatory genes, a rearrangement acted as a factor decreasing fertility of the organism. The rearrangement effect is identical to the expression of regulatory genes per se. It is concluded that the chromosomal rearrangement affects the examined regulatory genes indirectly through a change in the operation of regulatory genes located within the rearrangement. Thus, rearrangements gain great importance for the definition of the pattern of genome functional activity. Widespread distribution of rearrangements in individual genotypes and their effectivity in the process of speciation are thus explained.  相似文献   

5.
Franco S  Alt FW  Manis JP 《DNA Repair》2006,5(9-10):1030-1041
Guarding the genome against internal and external assaults requires the coordinated interaction of multiple cellular networks to sense, respond to, and repair breaks in chromosomal DNA. Both external factors such as ionizing radiation or internal events like oxidative damage can cause DNA double stranded breaks (DSBs). DSBs are also part of the normal lymphocyte developmental program where they are an integral element of the mechanisms that generate a diverse immune repertoire in the context of V(D)J and immunoglobulin heavy chain (IgH) class switch recombination (CSR). DSBs initiate a cascade of cellular events that direct cells to pause and properly repair potentially lethal chromosomal breaks. Errors in the repair of both general and lymphocyte-specific DSBs can lead to oncogenic chromosomal translocations . Here, we review recent advances in understanding factors and protein complexes involved in the response to DNA DSBs with a focus on the B lymphocyte specific process of CSR.  相似文献   

6.
Effect of chromosomal rearrangements on the expression of mutations was studied in Drosophila melanogaster regulatory genes. These were facultative dominant lethals and recessive lethals on the X chromosome obtained by the classical Muller-5 method. Chromosomal rearrangements drastically changed the expression of regulatory gene mutations. Rearrangements either caused the lethal effect of mutations or suppressed the already present lethality. The action of rearrangements exhibited the maternal or paternal effect. Irrespective of the presence in the genome of mutations at regulatory genes, a rearrangement acted as a factor decreasing fertility of the organism. The rearrangement effect is identical to the expression of regulatory genes per se. It is concluded that the chromosomal rearrangement affects the examined regulatory genes indirectly through a change in the operation of regulatory genes located within the rearrangement. Thus, rearrangements gain great importance for the definition of the pattern of genome functional activity. Widespread distribution of rearrangements in individual genotypes and their effectivity in the process of speciation are thus explained.  相似文献   

7.
Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs), a process that requires spatial colocalization of chromosomal breakpoints. The “contact first” hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects.  相似文献   

8.
DNA double-strand breaks (DSB) can arise during DNA replication, or after exposure to DNA-damaging agents, and their correct repair is fundamental for cell survival and genomic stability. Here, we show that the Smc5-Smc6 complex is recruited to DSBs de novo to support their repair by homologous recombination between sister chromatids. In addition, we demonstrate that Smc5-Smc6 is necessary to suppress gross chromosomal rearrangements. Our findings show that the Smc5-Smc6 complex is essential for genome stability as it promotes repair of DSBs by error-free sister-chromatid recombination (SCR), thereby suppressing inappropriate non-sister recombination events.  相似文献   

9.
DNA double-strand breaks (DSBs) are critical lesions that can lead to cell death or chromosomal rearrangements. Rad51 is necessary for most mitotic and meiotic DSB repair events, although a number of RAD51-independent pathways exist. Previously, we described DSB repair in rad51Delta yeast diploids that was stimulated by a DNA region termed "facilitator of break-induced replication" (FBI) located approximately 30kb from the site of an HO-induced DSB. Here, we demonstrate that FBI is a large inverted DNA repeat that channels the repair of DSBs into the single-strand annealing-gross chromosomal rearrangements (SSA-GCR) pathway. Further, analysis of DSB repair in rad54Delta cells allowed us to propose that the SSA-GCR repair pathway is suppressed in the presence of Rad51p. Therefore, an additional role of Rad51 might be to protect eukaryotic genomes from instabilities by preventing chromosomal rearrangements.  相似文献   

10.
Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID.  相似文献   

11.
Sung PA  Libura J  Richardson C 《DNA Repair》2006,5(9-10):1109-1118
Faithful repair of chromosomal double-strand breaks (DSBs) is central to genome integrity and the suppression of genome rearrangements including translocations that are a hallmark of leukemia, lymphoma, and soft-tissue sarcomas [B. Elliott, M. Jasin, Double-strand breaks and translocations in cancer, Cell. Mol. Life Sci. 59 (2002) 373-385; D.C. van Gent, J.H. Hoeijmakers, R. Kanaar, Chromosomal stability and the DNA double-stranded break connection, Nat. Rev. Genet. 2 (2001) 196-206]. Chemotherapy agents that target the essential cellular enzyme topoisomerase II (topo II) are known promoters of DSBs and are associated with therapy-related leukemias. There is a clear clinical association between previous exposure to etoposide and therapy-related acute myeloid leukemia (t-AML) characterized by chromosomal rearrangements involving the mixed lineage leukemia (MLL) gene on chromosome band 11q23 [C.A. Felix, Leukemias related to treatment with DNA topoisomerase II inhibitors, Med. Pediatr. Oncol. 36 (2001) 525-535]. Most MLL rearrangements initiate within a well-characterized 8.3 kb region that contains both putative topo II cleavage recognition sequences and repetitive elements leading to the logical hypothesis that MLL is particularly susceptible to aberrant cleavage and homology-mediated fusion to repetitive elements located on novel chromosome partners. In this review, we will discuss the findings and implications of recent attempts to confirm this hypothesis.  相似文献   

12.
Paired end mapping of chromosomal fragments has been used in human cells to identify numerous structural variations in chromosomes of individuals and of cancer cell lines; however, the molecular, biological and bioinformatics methods for this technology are still in development. Here, we present a parallel bioinformatics approach to analyze chromosomal paired-end tag (ChromPET) sequence data and demonstrate its application in identifying gene rearrangements in the model organism Saccharomyces cerevisiae. We detected several expected events, including a chromosomal rearrangement of the nonessential arm of chromosome V induced by selective pressure, rearrangements introduced during strain construction and gene conversion at the MAT locus. In addition, we discovered several unannotated Ty element insertions that are present in the reference yeast strain, but not in the reference genome sequence, suggesting a few revisions are necessary in the latter. These data demonstrate that application of the chromPET technique to a genetically tractable organism like yeast provides an easy screen for studying the mechanisms of chromosomal rearrangements during the propagation of a species.  相似文献   

13.
Chromosomal rearrangements can promote reproductive isolation by reducing recombination along a large section of the genome. We model the effects of the genetic barrier to gene flow caused by a chromosomal rearrangement on the rate of accumulation of postzygotic isolation genes in parapatry. We find that, if reproductive isolation is produced by the accumulation in parapatry of sets of alleles compatible within but incompatible across species, chromosomal rearrangements are far more likely to favor it than classical genetic barriers without chromosomal changes. New evidence of the role of chromosomal rearrangements in parapatric speciation suggests that postzygotic isolation is often due to the accumulation of such incompatibilities. The model makes testable qualitative predictions about the genetic signature of speciation.  相似文献   

14.
Efficient and faithful repair of DNA double-strand breaks (DSBs) is critical for genome stability. To understand whether cells carrying a functional repair apparatus are able to efficiently heal two distant chromosome ends and whether this DNA lesion might result in genome rearrangements, we induced DSBs in genetically modified mouse embryonic stem cells carrying two I-SceI sites in cis separated by a distance of 9 kbp. We show that in this context non-homologous end-joining (NHEJ) can repair using standard DNA pairing of the broken ends, but it also joins 3' non-complementary overhangs that require unusual joining intermediates. The repair efficiency of this lesion appears to be dramatically low and the extent of genome alterations was high in striking contrast with the spectra of repair events reported for two collinear DSBs in other experimental systems. The dramatic decline in accuracy suggests that significant constraints operate in the repair process of these distant DSBs, which may also control the low efficiency of this process. These findings provide important insights into the mechanism of repair by NHEJ and how this process may protect the genome from large rearrangements.  相似文献   

15.
Chromosomal aberrations induced by double strand DNA breaks   总被引:4,自引:0,他引:4  
Varga T  Aplan PD 《DNA Repair》2005,4(9):1038-1046
It has been suggested that introduction of double strand DNA breaks (DSBs) into mammalian chromosomes can lead to gross chromosomal rearrangements through improper DNA repair. To study this phenomenon, we employed a model system in which a double strand DNA break can be produced in human cells in vivo at a predetermined location. The ensuing chromosomal changes flanking the breakage site can then be cloned and characterized. In this system, the recognition site for the I-SceI endonuclease, whose 18 bp recognition sequence is not normally found in the human genome, is placed between a strong constitutive promoter and the Herpes simplex virus thymidine kinase (HSV-tk) gene, which serves as a negative selectable marker. We found that the most common mutation following aberrant DSB repair was an interstitial deletion; these deletions typically showed features of non-homologous end joining (NHEJ), such as microhomologies and insertions of direct or inverted repeat sequences. We also detected more complex rearrangements, including large insertions from adjacent or distant genomic regions. The insertion events that involved distant genomic regions typically represented transcribed sequences, and included both L1 LINE elements and sequences known to be involved in genomic rearrangements. This type of aberrant repair could potentially lead to gene inactivation via deletion of coding or regulatory sequences, or production of oncogenic fusion genes via insertion of coding sequences.  相似文献   

16.
DNA double-strand breaks (DSBs) are among the most deleterious types of damage that can occur in the genome of eukaryotic cells because failure to repair them can lead to loss of genetic information and chromosome rearrangements. DSBs can arise by failures in DNA replication and by exposure to environmental factors, such as ionizing radiations and radiomimetic chemicals. Moreover, they might arise when telomeres undergo extensive erosion, leading to the activation of the DNA damage response pathways and the onset of apoptosis and/or senescence. Importantly, DSBs can also form in a programmed manner during development. For example, meiotic recombination and rearrangement of the immunoglobulin genes in lymphocytes require the generation of site- or region-specific DSBs through the action of specific endonucleases. Efficient DSB repair is crucial in safeguarding genome integrity, whose maintenance in the face of DSBs involves branched signalling networks that switch on DNA damage checkpoints, activate DNA repair, induce chromatin reorganization and modulate numerous cellular processes. Not surprisingly, defects in these networks result in a variety of diseases ranging from severe genetic disorders to cancer predisposition and accelerated ageing.  相似文献   

17.
Plant nuclear genomes exhibit extensive structural variation in size, chromosome number, number and arrangement of genes, and number of genome copies per nucleus. This variation is the outcome of a set of highly active processes, including gene duplication and deletion, chromosomal duplication followed by gene loss, amplification of retrotransposons separating genes, and genome rearrangement, the latter often following hybridization and/or polyploidy. While these changes occur continuously, it is not surprising that some of them should be fixed evolutionarily and come to mark major clades. Large-scale duplications pre-date the radiation of Brassicaceae and Poaceae and correlate with the origin of many smaller clades as well. Nuclear genomes are largely colinear among closely related species, but more rearrangements are observed with increasing phylogenetic distance; however, the correlation between amount of rearrangement and time since divergence is not perfect. By changing patterns of gene expression and triggering genome rearrangements, novel combinations of genomes (hybrids) may be a driving force in evolution.  相似文献   

18.
Since DNA double-strand breaks (DSBs) contribute to the genomic instability that drives cancer development, DSB repair pathways serve as important mechanisms for tumor suppression. Thus, genetic lesions, such as BRCA1 and BRCA2 mutations, that disrupt DSB repair are often associated with cancer susceptibility. In addition, recent evidence suggests that DSB “mis-repair”, in which DSBs are resolved by an inappropriate repair pathway, can also promote genomic instability and presumably tumorigenesis. This notion has gained currency from recent cancer genome sequencing studies which have uncovered numerous chromosomal rearrangements harboring pathological DNA repair signatures. In this perspective, we discuss the factors that regulate DSB repair pathway choice and their consequences for genome stability and cancer.  相似文献   

19.
To maintain genomic integrity, double-strand breaks (DSBs) in chromosomal DNA must be repaired. In mammalian systems, the analysis of the repair of chromosomal DSBs has been limited by the inability to introduce well-defined DSBs in genomic DNA. In this study, we created specific DSBs in mouse chromosomes for the first time, using an expression system for a rare-cutting endonuclease, I-SceI. A genetic assay has been devised to monitor the repair of DSBs, whereby cleavage sites for I-SceI have been integrated into the mouse genome in two tandem neomycin phosphotransferase genes. We find that cleavage of the I-SceI sites is very efficient, with at least 12% of stably transfected cells having at least one cleavage event and, of these, more than 70% have undergone cleavage at both I-SceI sites. Cleavage of both sites in a fraction of clones deletes 3.8 kb of intervening chromosomal sequences. We find that the DSBs are repaired by both homologous and nonhomologous mechanisms. Nonhomologous repair events frequently result in small deletions after rejoining of the two DNA ends. Some of these appear to occur by simple blunt-ended ligation, whereas several others may occur through annealing of short regions of terminal homology. The DSBs are apparently recombinogenic, stimulating gene targeting of a homologous fragment by more than 2 orders of magnitude. Whereas gene-targeted clones are nearly undetectable without endonuclease expression, they represent approximately 10% of cells transfected with the I-SceI expression vector. Gene targeted clones are of two major types, those that occur by two-sided homologous recombination with the homologous fragment and those that occur by one-sided homologous recombination. Our results are expected to impact a number of areas in the study of mammalian genome dynamics, including the analysis of the repair of DSBs and homologous recombination and, potentially, molecular genetic analyses of mammalian genomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号