首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have examined the changes induced by the monoamine oxidase (MAO; EC 1.4.3.4) inhibitors tranylcypromine, clorgyline, and deprenyl on MAO activity and 5-hydroxytryptamine (serotonin, 5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in rat brain and blood (plasma and whole blood). The decreases of MAO-A activity observed in the liver and lungs after different doses of clorgyline or tranylcypromine correlated significantly (r > 0.80 in all cases) with the decline of plasma 5-HIAA. This was unaffected by 0.25 and 5 mg kg?1 of deprenyl, indicating that 5-HT was deaminated exclusively in the periphery by MAO-A. It is interesting that very potent and significant correlations (r > 0.75) were found between plasma 5-HIAA and MAO-A activity, 5-HIAA and 5-HT content in brain tissue. These results suggest that plasma 5-HIAA can be used confidently as a peripheral indicator of the inhibition of MAO-A in brain. This may represent a favorable alternative to the analysis of 5-HIAA in CSF in psychiatric patients undergoing antidepressant treatment with nonspecific MAO inhibitors or with the new selective MAO-A inhibitors.  相似文献   

2.
Several multifunctional iron chelators have been synthesized from hydroxyquinoline pharmacophore of the iron chelator, VK-28, possessing the monoamine oxidase (MAO) and neuroprotective N-propargylamine moiety. They have iron chelating potency similar to desferal. M30 is a potent irreversible rat brain mitochondrial MAO-A and -B inhibitor in vitro (IC50, MAO-A, 0.037 +/- 0.02; MAO-B, 0.057 +/- 0.01). Acute (1-5 mg/kg) and chronic [5-10 mg/kg intraperitoneally (i.p.) or orally (p.o.) once daily for 14 days]in vivo studies have shown M30 to be a potent brain selective (striatum, hippocampus and cerebellum) MAO-A and -B inhibitor. It has little effects on the enzyme activities of the liver and small intestine. Its N-desmethylated derivative, M30A is significantly less active. Acute and chronic treatment with M30 results in increased levels of dopamine (DA), serotonin(5-HT), noradrenaline (NA) and decreases in DOPAC (dihydroxyphenylacetic acid), HVA (homovanillic acid) and 5-HIAA (5-hydroxyindole acetic acid) as determined in striatum and hypothalamus. In the mouse MPTP (N-methy-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease (PD) it attenuates the DA depleting action of the neurotoxin and increases striatal levels of DA, 5-HT and NA, while decreasing their metabolites. As DA is equally well metabolized by MAO-A and -B, it is expected that M30 would have a greater DA neurotransmission potentiation in PD than selective MAO-B inhibitors, for which it is being developed, as MAO-B inhibitors do not alter brain dopamine.  相似文献   

3.
4.
Monoamine oxidases A and B (MAO-A and MAO-B) are enzymes of the outer mitochondrial membrane that metabolize biogenic amines. In the adult central nervous system, MAOs have important functions for neurotransmitter homeostasis. Expression of MAO isoforms has been detected in the developing embryo. However, suppression of MAO-B does not induce developmental alterations. In contrast, targeted inhibition and knockdown of MAO-A expression (E7.5–E10.5) caused structural abnormalities in the brain. Here we explored the molecular mechanisms underlying defective brain development induced by MAO-A knockdown during in vitro embryogenesis. The developmental alterations were paralleled by diminished apoptotic activity in the affected neuronal structures. Moreover, dysfunctional MAO-A expression led to elevated levels of embryonic serotonin (5-hydroxytryptamine (5-HT)), and we found that knockdown of serotonin receptor-6 (5-Htr6) expression or pharmacologic inhibition of 5-Htr6 activity rescued the MAO-A knockdown phenotype and restored apoptotic activity in the developing brain. Our data suggest that excessive 5-Htr6 activation reduces activation of caspase-3 and -9 of the intrinsic apoptotic pathway and enhances expression of antiapoptotic proteins Bcl-2 and Bcl-XL. Moreover, we found that elevated 5-HT levels in MAO-A knockdown embryos coincided with an enhanced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and a reduction of proliferating cell numbers. In summary, our findings suggest that excessive 5-HT in MAO-A-deficient mouse embryos triggers cellular signaling cascades via 5-Htr6, which suppresses developmental apoptosis in the brain and thus induces developmental retardations.  相似文献   

5.
6.
The effects of metal chelators on monoamine oxidase (MAO) isozymes, MAO-A and MAO-B, in monkey brain mitochondria were investigated in vitro. MAO-A activity increased to about 40% with 0.1 μM calcium disodium edetate (CaNa2EDTA) using serotonin as a substrate, and this activation was proportional to the concentration of CaNa2EDTA. On the other hand, MAO-A activities were decreased gradually with an increasing concentration of o-phenanthroline and diethyldithiocarbamic acid, but these metal chelators had no effect on MAO-B activity in monkey brain. The activation of MAO-A activity by CaNa2EDTA was reversible. CaNa2EDTA did not activate both MAO-A and MAO-B activities in rat brain mitochondria. Zn and Fe ions were found in the mitochondria of monkey brain. Zn ions potently inhibited MAO-A activity, but Fe ions did not inhibit either MAO-A or MAO-B activity in monkey brain mitochondria. These results indicate that the activating action of CaNa2EDTA on MAO-A was the result of the chelating of Zn ions contained in mitochondria by CaNa2EDTA. These results also indicate the possibility that Zn ions may regulate physiologically the level of serotonin and norepinephrine content in brain by inhibiting a MAO-A activity.  相似文献   

7.
Monoamine oxidase in the vervet monkey showed greater variations in activity in six brain regions when tyramine or phenylethylamine was used as the substrate (3.8- to 4.1-fold differences) than when serotonin was the substrate (1.8-fold differences). With phenylethylamine and tyramine as substrates, the highest MAO specific activities were found in the hypothalamus and the lowest in the cerebellum and cortex. With serotonin as the substrate, the highest specific activities were in the mesencephalon and cortex. The inhibition of tyramine deamination by clorgyline and deprenyl yielded biphasic plots indicative of the presence of MAO-A and MAO-B enzyme forms in the vervet brain. On the basis of these inhibitor curves, the vervet brain could be estimated to contain approximately 85% MAO-B and 15% MAO-A, in contrast to rat brain which contains 45% MAO-B and 55% MAO-A. The inhibition of serotonin deamination by deprenyl in vervet brain yielded a biphasic plot, suggesting that some serotonin deamination in the vervet is accomplished by the MAO-B enzyme form. Estimations of the relative amounts of MAO-A and MAO-B based on inhibitor curves or based on substrate ratios yielded proportionate results which were in close agreement across the different brain regions, supporting the validity of these approaches to estimating MAO-A and MAO-B activities.  相似文献   

8.
9.
Fructose feeding has been shown to induce the cardiac alpha-myosin heavy chain (MHC) expression and protect the heart from ischemia- and reperfusion-mediated cell injury. This study was designed to investigate the mechanism involved in the effect of this sugar on MHC gene expression and cardiac protection. Adult mice were fed with a 6-propyl-2-thiouracil (PTU) diet or PTU combined with a fructose-rich diet. PTU treatment made animals hypothyroid and that resulted in total replacement of cardiac alpha-MHC with the beta-MHC isoform. Addition of fructose in the PTU diet led to reexpression of the alpha-MHC isoform to a significant level. Similar induction of alpha-MHC expression was also seen when PTU diet was combined with resveratrol, an agonist of sirtuin (SIRT) 1 deacetylase. Analysis of heart lysate of these animals indicated that fructose feeding augmented the NAD-to-NADH ratio and the cardiac SIRT1 levels, thus suggesting a role of SIRT1 in fructose-mediated activation of alpha-MHC isoform. To analyze a direct effect of SIRT1 on MHC isoform expression, we generated transgenic mice expressing SIRT1 in the heart. Treatment of these transgenic mice with PTU diet did not lead to disappearance of alpha-MHC, as it did in the nontransgenic animals. SIRT1 overexpression also activated the alpha-MHC gene promoter in transient transfection assays, thus confirming a role of SIRT1 in the induction of alpha-MHC expression. Fructose feeding also attenuated the MHC isoform shift and blocked the cardiac hypertrophy response associated with pressure overload, which was again associated with the induction of cardiac SIRT1 levels. These results demonstrate that fructose feeding protects the heart by induction of the SIRT1 deacetylase and highlight its role in the induction of alpha-MHC gene expression.  相似文献   

10.
11.
Pargyline, an inhibitor of monoamine oxidase type B (MAO-B), did not prevent the depletion of heart norepinephrine 24 hr after a single dose of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice. In mice killed 24 hr after the last of 4 daily doses of MPTP, the depletion of dopamine in the striatum and of norepinephrine in the frontal cortex was completely prevented by pargyline, but the depletion of heart norepinephrine was not prevented. These results with pargyline are the same as results obtained earlier with deprenyl, another selective inhibitor of MAO-B. The doses of pargyline and of deprenyl that were used resulted in almost complete inhibition of MAO-B activity (phenylethylamine as substrate) in brain, heart and liver of mice. Deprenyl did not inhibit MAO-A activity (serotonin as substrate) in brain, but pargyline caused some inhibition of MAO-A in brain. In heart and liver, serotonin was oxidized only at about 1/10 the rate of phenylethylamine oxidation, suggesting that MAO-B predominates in these tissues. Both pargyline and deprenyl caused some inhibition of serotonin deamination in heart and liver, suggesting that the oxidation may have been due partly to MAO-B. Experiments with selective MAO inhibitors in vitro showed that only about 20% of the oxidation of serotonin was occurring via MAO-B in heart and liver. The in vitro oxidation of MPTP by MAO in mouse brain, heart and liver was almost completely inhibited by pretreatment with either pargyline or deprenyl. Neither pargyline nor deprenyl had any significant effect on the concentrations of MPTP in brain or heart one-half hr after injection of MPTP into mice. The concentrations of the metabolite, MPP+ (1-methyl-4-phenyl-pyridinium), were markedly reduced in brain and in heart by pretreatment with either pargyline or deprenyl. The data suggest that MPP+ formation, which is necessary for the depletion of brain catecholamines after MPTP injection, may not be necessary for depletion of norepinephrine in heart. Since the oxidation of MPTP in vitro was inhibited more by pargyline or deprenyl pretreatment than was the appearance of MPP+ in vivo, the possibility exists that some MPP+ formation might occur by an enzyme other than MAO.  相似文献   

12.
The degradation of biogenic amines by monoamine oxidase A (MAO-A) generates reactive oxygen species (ROS) which participate in serotonin and tyramine signaling. This study aimed to investigate the role of ROS in the mitogenic signaling activated during tyramine and serotonin oxidation by MAO-A in smooth muscle cells (SMC). Incubation of SMC with serotonin or tyramine induced intracellular ROS generation, and a signaling cascade involving metalloproteases and the neutral sphingomyelinase-2 (nSMase2, the initial step of the sphingolipid pathway), ERK1/2 phosphorylation, and DNA synthesis. Silencing MAO-A by siRNA, pharmacological MAO-A inhibitors (pargyline and Ro41-1049), and the antioxidant/ROS scavenger butylated hydroxytoluene (BHT) inhibited the signaling cascade, suggesting that ROS generated during tyramine oxidation by MAO-A are required. The MMP inhibitor Batimastat, MMP2-specific siRNA, and MMP2 deletion (MMP2(-/-) fibroblasts) blocked nSMase activation and SMC proliferation, suggesting a role for MMP2 in this signaling pathway. Silencing nSMase2 by siRNA did not inhibit ROS generation and MMP2 activation, but blocked SMC proliferation induced by tyramine, suggesting that nSMase2 is downstream MMP2. These findings demonstrate that H(2)O(2)-generated during tyramine oxidation by MAO-A triggers a stress-induced mitogenic signaling via the MMP2/sphingolipid pathway, which could participate in excessive remodeling and alteration of the vascular wall.  相似文献   

13.
14.
Younho Lee 《Molecular simulation》2013,39(15):1242-1248
Monoamine oxidase A (MAO-A) converts norepinephrine and serotonin to an oxidative form. These monoamine neurotransmitters have important roles in depression. The MAO-A inhibitors have been discovered for neurodegenerative disease therapy. In order to design novel MAO-A inhibitors, in this study, the quantitative structure-activity relationships for the combined series of indoles and pyrroles were elucidated and the structural conditions to show good inhibitory effects on MAO-A were derived. This result can help us design new inhibitors irrespective of their specific moiety.  相似文献   

15.
The ability of moclobamide and other benzamide derivatives to inhibit the activity of monoamine oxidase in the rat brain was studied. Distinct effects of these compounds on the deamination of serotonin and norepinephrine (MAO-A substrates); 2-phenylethylamine (selective MAO-B substrate); tyramine and dopamine (MAO-A and MAO-B substrates) are shown. It was demonstrated that among all the compounds studied moclobamide appeared to be the most active and selective inhibitor of MAO-A: at a concentration of 100 microM it caused a 100% inhibition of serotonin and norepinephrine deamination, which might be explained by the presence of C1 atom in the para-position of benzene ring in moclobamide molecule. Other benzamide derivatives were less active in inhibiting MAO-A and had but a negligible effect on dopamine- and 2-phenylethylamine deamination.  相似文献   

16.
17.
This study has used receptor autoradiography to characterize imidazoline binding sites (I-BS) in monoamine oxidase (MAO) A knockout and wild-type mice. A comparison between MAO-A and MAO-B, binding of the endogenous beta-carboline [(3)H]harmane, and I-BS, has been made using sections from brain and kidney. The loss of binding to MAO-A in the knockout animals was confirmed using the selective radioligand [(3)H]Ro41-1049, with labelling reduced to background levels. The binding of [(3)H]Ro19-6327 to MAO-B was unaffected, indicating no change in this isoform in response to the loss of MAO-A. A reduction in binding to the I(2)-BS, as labelled by both [(3)H]idazoxan and [(3)H]2-BFI (2-(2-benzofuranyl)-2-imidazoline), was seen in the MAO-A knockout animals in both brain and kidney sections, whereas binding to the I(1)-BS in kidney sections remained unchanged. The loss of I(2) binding was found to be regionally dependent and was positively correlated with the relative expression of MAO-A in specific regions in the wild-type animals. Using the MAO-A knockout mice it was also possible to demonstrate a non-MAO-A population of binding sites labelled by the putative I-BS endogenous ligand, harmane.  相似文献   

18.
Intrastriatal administration of the succinate dehydrogenase (SDH) inhibitor malonate produces neuronal injury by a "secondary excitotoxic" mechanism involving the generation of reactive oxygen species (ROS). Recent evidence indicates dopamine may contribute to malonate-induced striatal neurodegeneration; infusion of malonate causes a pronounced increase in extracellular dopamine and dopamine deafferentation attenuates malonate toxicity. Inhibition of the catabolic enzyme monoamine oxidase (MAO) also attenuates striatal lesions induced by malonate. In addition to forming 3,4-dihydroxyphenylacetic acid, metabolism of dopamine by MAO generates H2O2, suggesting that dopamine metabolism may be a source of ROS in malonate toxicity. There are two isoforms of MAO, MAO-A and MAO-B. In this study, we have investigated the role of each isozyme in malonate-induced striatal injury using both pharmacological and genetic approaches. In rats treated with either of the specific MAO-A or -B inhibitors, clorgyline or deprenyl, respectively, malonate lesion volumes were reduced by 30% compared to controls. In knock-out mice lacking the MAO-A isoform, malonate-induced lesions were reduced by 50% and protein carbonyls, an index ROS formation, were reduced by 11%, compared to wild-type animals. In contrast, mice deficient in MAO-B showed highly variable susceptibility to malonate toxicity precluding us from determining the precise role of MAO-B in this form of brain damage. These findings indicate that normal levels of MAO-A participate in expression of malonate toxicity by a mechanism involving oxidative stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号