首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
17-Allylamino-17-demethoxygeldanamycin (17-AAG), a typical Hsp90 inhibitor derived from geldanamycin (GA), has entered Phase III clinical trials for cancer therapy. However, it has several significant limitations such as poor solubility, limited bioavailability and unacceptable hepatotoxicity. In this study, the anticancer activity and mechanism of SNX-25a, a novel Hsp90 inhibitor, was investigated comparing with that of 17-AAG. We showed that SNX-25a triggered growth inhibition more sensitively than 17-AAG against many human cancer cells, including K562, SW-620, A375, Hep-2, MCF-7, HepG2, HeLa, and A549 cell lines, especially at low concentrations (<1 μM). It showed low cytotoxicity in L-02, HDF and MRC5 normal human cells. Compared with 17-AAG, SNX-25a was more potent in arresting the cell cycle at G2 phase, and displayed more potent effects on human cancer cell apoptosis and Hsp90 client proteins. It also exhibited a stronger binding affinity to Hsp90 than 17-AAG using molecular docking. Considering the superiority effects on Hsp90 affinity, cell growth, cell cycle, apoptosis, and Hsp90 client proteins, SNX-25a is supposed as a potential anticancer agent that needs to be explored in detail.  相似文献   

2.
ERBB2 increases the sensitivity of breast cancer cells to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). This has been attributed to the disruption of ERBB3/ERBB2 heterodimers that maintain a crucial cell survival signal via phosphatidylinositol 3-kinase/AKT. ERBB2 confers a poor clinical outcome in medulloblastoma, the most common malignant pediatric brain tumor. Here, we show that medulloblastoma cell sensitivity to 17-AAG is directly related to ERBB2 expression level. Furthermore, overexpression of exogenous ERBB2 in these cells induces spontaneous homodimerization, further enhancing cell sensitivity to 17-AAG. In contrast to breast cancer cells, this increased sensitivity to 17-AAG does not result from cell dependence on AKT1 activity. Rather, we show that 17-AAG generates a dose- and time-dependent increase in MEK/ERK signaling that is required for the drug to inhibit the proliferation of medulloblastoma cells and that ERBB2 sensitizes medulloblastoma cells to 17-AAG by up-regulating basal MEK/ERK signaling. We further show that down-regulation of MEK1 activity markedly reduces the sensitivity of medulloblastoma, breast, and ovarian cancer cells to 17-AAG, whereas expression of a constitutively active MEK1 potentiates the activity of 17-AAG against these cells. Therefore, intact MEK/ERK signaling may be required for optimal 17AAG activity against a variety of tumor cell types. These data identify a new mechanism by which 17-AAG inhibits the proliferation of cancer cells. Defining the precise mode of action of these agents within specific tumor cell types will be crucial if this class of drugs is to be efficiently developed in the clinic.  相似文献   

3.
In order to investigate the mechanism of radio-sensitization by an Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), we studied repair of DNA double strand breaks (DSBs) in irradiated human cells pre-treated with 17-AAG. DSBs are thought to be the critical target for radiation-induced cell death. Two human tumor cell lines DU145 and SQ-5 which showed clear radio-sensitization by 17-AAG revealed a significant inhibition of DSB repair, while normal human cells which did not show radio-sensitization by the drug indicated no change in the DSB repair kinetics with 17-AAG. We further demonstrated that BRCA2 was a novel client protein for Hsp90, and 17-AAG caused the degradation of BRCA2 and in turn altered the behavior of Rad51, a critical protein for homologous recombination (HR) pathway of DSB repair. Our data demonstrate for the first time that 17-AAG inhibits the HR repair process and could provide a new therapeutic strategy to selectively result in higher tumor cell killing.  相似文献   

4.
The heat shock protein HSP90 serves as a chaperone for receptor protein kinases, steroid receptors, and other intracellular signaling molecules. Targeting HSP90 with ansamycin antibiotics disrupts the normal processing of clients of the HSP90 complex. The platelet-derived growth factor receptor alpha (PDGFRalpha) is a tyrosine kinase receptor up-regulated and activated in several malignancies. Here we show that the PDGFRalpha forms a complex with HSP90 and the co-chaperone cdc37 in ovarian, glioblastoma, and lung cancer cells. Treatment of cancer cell lines expressing the PDGFRalpha with the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) promotes degradation of the receptor. Likewise, phospho-Akt, a downstream target, is degraded after treatment with 17-AAG. In contrast, PDGFRalpha expression is not affected by 17-AAG in normal human smooth muscle cells or 3T3 fibroblasts. PDGFRalpha degradation by 17-AAG is inhibited by the proteasome inhibitor MG132. High molecular weight, ubiquitinated forms of the receptor are detected in cells treated with 17-AAG and MG132. Degradation of the receptor is also inhibited by a specific neutralizing antibody to the PDGFRalpha but not by a neutralizing antibody to PDGF or by imatinib mesylate (Gleevec). Ultimately, PDGFRalpha-mediated cell proliferation is inhibited by 17-AAG. These results show that 17-AAG promotes PDGFRalpha degradation selectively in transformed cells. Thus, not only mutated tyrosine kinases but also overexpressed receptors in cancer cells can be targeted by 17-AAG.  相似文献   

5.
We investigated whether the combined treatment of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), an inhibitor of heat-shock protein 90 (hsp90), and celecoxib, an inhibitor of cyclooxygenase-2, can cooperatively enhance the radiosensitivity of various human cancer cells. Combined treatment with 17-AAG and celecoxib, at clinically relevant concentrations, cooperatively induced radiosensitization in all tested cancer cells, but not in normal cells. Cooperative radiosensitization by the drug combination was also shown in a human tumor xenograft system. We found that ataxia-telangiectasia and rad3-related (ATR) and ataxia-telangiectasia mutated (ATM) are novel client proteins of hsp90. Combined treatment with 17-AAG and celecoxib cooperatively induced downregulation of ATR and ATM. In conclusion, combined treatment with 17-AAG and celecoxib at clinically relevant concentrations may significantly enhance the therapeutic efficacy of ionizing radiation.  相似文献   

6.
Heart failure accounts for substantial morbidity and mortality worldwide. Accumulating evidence suggests that aberrant cardiac cell death caused by endoplasmic reticulum stress (ERS) is often associated with structural or functional cardiac abnormalities that lead to insufficient cardiac output. The detailed molecular mechanism underlying the pathological death of cardiomyocytes still remains poorly understood. We found that 17-AAG (tanespimycin), an HSP90 (heat shock protein 90) inhibitor often used to kill cancer cells, could potently inhibit tunicamycin-induced ERS and the downstream nuclear factor kappa B activity in neonatal rat cardiomyocytes, leading to diminished apoptotic signaling and thus enhanced cell survival. Interestingly, the antiapoptotic effect of 17-AAG on cardiomyocytes required normal expression of miR-93, an oncogenic microRNA known to promote cell survival and growth. Our study implicated a new pharmacological role of 17-AAG in supporting the miR-93–associated oncogenic signaling to prevent the pathological death of cardiomyocytes. The results opened opportunities for exploring new strategies in the development of therapeutic agents.  相似文献   

7.
A novel 17-allylamino-17-demethoxygeldanamycin (17-AAG) glucoside (1) was obtained from in vitro enzymatic glycosylation using a UDP-glycosyltransferase (YjiC). The water-solubility of compound 1 was approximately 10.5 times higher than that of the substrate, 17-AAG. Compound 1 showed potential anti-proliferative activities against five human cancer cell lines, with IC50 values ranging from 5.26 to 28.52 μM. Further studies also indicated that compound 1 could inhibit the growth of CNE-2Z cells by inducing the degradation of Hsp90 client proteins (Akt, c-Raf, Bcl-2, and HIF-1α). In addition, compound 1 showed greater potential anti-tumor efficacy than 17-AAG in nude mice xenografted with CNE-2Z cells. Therefore, we suggest that in vitro enzymatic glycosylation is a powerful approach for the structural optimization of 17-AAG.  相似文献   

8.
An unbalanced chromosome number (aneuploidy) is present in most malignant tumours and has been attributed to mitotic mis-segregation of chromosomes. However, recent studies have shown a relatively high rate of chromosomal mis-segregation also in non-neoplastic human cells, while the frequency of aneuploid cells remains low throughout life in most normal tissues. This implies that newly formed aneuploid cells are subject to negative selection in healthy tissues and that attenuation of this selection could contribute to aneuploidy in cancer. To test this, we modelled cellular growth as discrete time branching processes, during which chromosome gains and losses were generated and their host cells subjected to selection pressures of various magnitudes. We then assessed experimentally the frequency of chromosomal mis-segregation as well as the prevalence of aneuploid cells in human non-neoplastic cells and in cancer cells. Integrating these data into our models allowed estimation of the fitness reduction resulting from a single chromosome copy number change to an average of ≈30% in normal cells. In comparison, cancer cells showed an average fitness reduction of only 6% (p = 0.0008), indicative of aneuploidy tolerance. Simulations based on the combined presence of chromosomal mis-segregation and aneuploidy tolerance reproduced distributions of chromosome aberrations in >400 cancer cases with higher fidelity than models based on chromosomal mis-segregation alone. Reverse engineering of aneuploid cancer cell development in silico predicted that aneuploidy intolerance is a stronger limiting factor for clonal expansion of aneuploid cells than chromosomal mis-segregation rate. In conclusion, our findings indicate that not only an elevated chromosomal mis-segregation rate, but also a generalised tolerance to novel chromosomal imbalances contribute to the genomic landscape of human tumours.  相似文献   

9.
Natural BH3-memitic (-)-gossypol shows promising antitumor efficacy in several kinds of cancer. However, our previous studies have demonstrated that protective autophagy decreases the drug sensitivities of Bcl-2 inhibitors in hepatocellular carcinoma (HCC) cells. In the present study, we are the first to report that Hsp90 inhibitor 17-AAG enhanced (-)-gossypol-induced apoptosis via suppressing (-)-gossypol-triggered protective autophagy and Mcl-1 accumulation. The suppression effect of 17-AAG on autophagy was mediated by inhibiting ERK-mediated Bcl-2 phosphorylation while was not related to Beclin1 or LC3 protein instability. Meanwhile, 17-AAG downregulated (-)-gossypol-triggered Mcl-1 accumulation by suppressing Mcl-1Thr163 phosphorylation and promoting protein degradation. Collectively, our study indicates that Hsp90 plays an important role in tumor maintenance and inhibition of Hsp90 may become a new strategy for sensitizing Bcl-2-targeted chemotherapies in HCC cells.  相似文献   

10.
Heat shock protein 90 (Hsp90) is essential for activation of many of the most important regulatory proteins of eukaryotic cells. It is an extremely conserved protein, such that heterologous expressions of either human Hsp90beta or Caenorhabditis elegans Hsp90 will provide the essential Hsp90 function in yeast. The ability of these metazoan Hsp90s to provide this Hsp90 function to yeast cells requires Sti, a Hsp90 system cochaperone. Yeast that is expressing human Hsp90beta in place of the normal native yeast Hsp90 is selectively hypersensitised to Hsp90 inhibitor drugs. Hsp90 drugs are promising anticancer agents, their administration simultaneously destabilizing a number of the proteins critical to multistep carcinogenesis. Though one of these drugs (17-allylaminogeldanamycin, 17-AAG) is now progressing to Phase 2 clinical trials, there is a pressing need to identify selective Hsp90 inhibitors that are more soluble than 17-AAG. High-throughput screening for chemical agents that exert greater inhibitory effects against yeast expressing the human Hsp90beta relative to yeast expressing its native Hsp90 should therefore facilitate the search for new Hsp90 inhibitors.  相似文献   

11.
12.
We have observed karyotypic changes involving the gain of chromosome 17q in three independent human embryonic stem (hES) cell lines on five independent occasions. A gain of chromosome 12 was seen occasionally. This implies that increased dosage of chromosome 17q and 12 gene(s) provides a selective advantage for the propagation of undifferentiated hES cells. These observations are instructive for the future application of hES cells in transplantation therapies in which the use of aneuploid cells could be detrimental.  相似文献   

13.
Heat shock protein 90 (HSP90) inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70) family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.  相似文献   

14.
Heat-shock protein 90 (Hsp90) functions as part of a multichaperone complex that folds, activates and assembles its client proteins. Androgen receptor (AR), a pathogenic gene product in spinal and bulbar muscular atrophy (SBMA), is one of the Hsp90 client proteins. We examined the therapeutic effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG), a potent Hsp90 inhibitor, and its ability to degrade polyglutamine-expanded mutant AR. Administration of 17-AAG markedly ameliorated motor impairments in the SBMA transgenic mouse model without detectable toxicity, by reducing amounts of monomeric and aggregated mutant AR. The mutant AR showed a higher affinity for Hsp90-p23 and preferentially formed an Hsp90 chaperone complex as compared to wild-type AR; mutant AR was preferentially degraded in the presence of 17-AAG in both cells and transgenic mice as compared to wild-type AR. 17-AAG also mildly induced Hsp70 and Hsp40. 17-AAG would thus provide a new therapeutic approach to SBMA and probably to other related neurodegenerative diseases.  相似文献   

15.
The two translocation chromosomes in the Poso 5B/7B translocation have been isolated in separate heterozygous aneuploid stocks (19II+5B+T). The translocation breakpoints are in the long arm of chromosome 7B and the short arm of chromosome 5B. The translocation chromosome bearing the 5BL pairing inhibitor was obtained as a homozygous aneuploid (19II+T 1 II ). The heterozygous aneuploid hemizygous for the pairing inhibitor (19II+5B+T2) was used to produce intergeneric hybrids. Only a small percentage were of the high-pairing type (17%), the majority having received chromosome 5B through the egg. This indicates a strong selection against eggs containing the translocation chromosome deficient for the pairing inhibitor.  相似文献   

16.

Background

Leishmaniasis is a neglected endemic disease with a broad spectrum of clinical manifestations. Pentavalent antimonials have been the treatment of choice for the past 70 years and, due to the emergence of resistant cases, the efficacy of these drugs has come under scrutiny. Second-line drugs are less efficacious, cause a range of side effects and can be costly. The formulation of new generations of drugs, especially in developing countries, has become mandatory.

Methodology/Principal Findings

We investigated the anti-leishmanial effect of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), an HSP90 inhibitor, in vitro. This inhibitor is currently in clinical trials for cancer treatment; however, its effects against intracellular Leishmania remain untested. Macrophages infected with L. amazonensis were treated with 17-AAG (25–500 nM) and parasite load was quantified using optical microscopy. Parasite load declined in 17-AAG-treated macrophages in a dose- and time-dependent manner. Intracellular parasite death became irreversible after 4 h of treatment with 17-AAG, and occurred independent of nitric oxide (NO) and superoxide (O2 ) production. Additionally, intracellular parasite viability was severely reduced after 48 h of treatment. Interestingly, treatment with 17-AAG reduced pro-inflammatory mediator production, including TNF-α, IL-6 and MCP-1, yet IL-12 remained unaffected. Electron microscopy revealed morphological alterations, such as double-membrane vacuoles and myelin figures at 24 and 48 h after 17-AAG treatment.

Conclusions/Significance

The HSP90 inhibitor, 17-AAG, possesses high potency under low dosage and reduces both pro-inflammatory and oxidative molecule production. Therefore, further studies are warranted to investigate this inhibitor’s potential in the development of new generations of anti-leishmanials.  相似文献   

17.
Most solid tumors are aneuploid, and it has been proposed that aneuploidy is the consequence of an elevated rate of chromosome missegregation in a process called chromosomal instability (CIN). However, the relationship of aneuploidy and CIN is unclear because the proliferation of cultured diploid cells is compromised by chromosome missegregation. The mechanism for this intolerance of nondiploid genomes is unknown. In this study, we show that in otherwise diploid human cells, chromosome missegregation causes a cell cycle delay with nuclear accumulation of the tumor suppressor p53 and the cyclin kinase inhibitor p21. Deletion of the p53 gene permits the accumulation of nondiploid cells such that CIN generates cells with aneuploid genomes that resemble many human tumors. Thus, the p53 pathway plays an important role in limiting the propagation of aneuploid human cells in culture to preserve the diploid karyotype of the population. These data fit with the concordance of aneuploidy and disruption of the p53 pathway in many tumors, but the presence of aneuploid cells in some normal human and mouse tissues indicates that there are known exceptions to the involvement of p53 in aneuploid cells and that tissue context may be important in how cells respond to aneuploidy.  相似文献   

18.
19.
Stem cell-based approaches provide hope as a potential therapy for neurodegenerative diseases and stroke. One of the major scientific hurdles for stem cell therapy is the poor survival rate of the newly formed or transplanted neural stem cells. In this study, we found that low-dose treatment with the Heat shock protein 90 (Hsp90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), a heavily investigated anti-cancer drug, prevented neural progenitor cells from either naturally-occurring or stress-induced apoptosis, although it induced apoptosis at higher doses. This stress adaptation effect mediated by low-dose 17-AAG is accompanied by activation of multiple cell survival pathways, including the stress response pathway (induction of Hsp70), the MAPK pathway, and the PI3K/Akt pathway. When administered in vivo, 17-AAG led to Akt and glycogen synthase kinase 3β phosphorylation, and more 5-bromo-2'-deoxyuridine positive cells in the mouse brain. These findings could have profound implications in stem cell therapy for neurodegenerative diseases and stroke.  相似文献   

20.
RET/PTC1 is a rearranged form of the RET tyrosine kinase commonly seen in papillary thyroid carcinomas. It has been shown that RET/PTC1 decreases expression of the sodium/iodide symporter (NIS), the molecule that mediates radioiodide therapy for thyroid cancer. Using proteomic analysis, we identify hsp90 and its co-chaperone p50cdc37 as novel proteins associated with RET/PTC1. Inhibition of hsp90 function with 17-allylamino-17-demothoxygeldanamycin (17-AAG) reduces RET/PTC1 protein levels. Furthermore, 17-AAG increases radioiodide accumulation in thyroid cells, mediated in part through a protein kinase A-independent mechanism. We show that 17-AAG does not increase the total amount of NIS protein or cell surface NIS localization. Instead, 17-AAG increases radioiodide accumulation by decreasing iodide efflux. Finally, the ability of 17-AAG to increase radioiodide accumulation is not restricted to thyroid cells expressing RET/PTC1. These findings suggest that 17-AAG may be useful as a chemotherapeutic agent, not only to inhibit proliferation but also to increase the efficacy of radioiodide therapy in patients with thyroid cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号