首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Homeobox genes located in the 5' part of the HoxA and HoxD complexes are required for proliferation of skeletal progenitor cells of the vertebrate limb. Specific combinations of gene products determine the length of the upper arm (genes belonging to groups 9 and 10), the lower arm (groups 10, 11 and 12) and the digits (groups 11, 12 and 13). In these different domains, individual gene products quantitatively contribute to an overall protein dose, with predominant roles for groups 11 and 13. Quantitative reduction in the gene dose in each set results in truncations of the corresponding anatomical regions. The physical order of the genes in the HoxA and HoxD complexes, as well as a unidirectional sequence in gene activation, allow for completion of the process in a precise order, which in turn makes possible the sequential outgrowth of the respective primordia. While the skeletal patterns of upper and lower limb are relatively stable throughout the tetrapods, more variation is seen in the digits. Molecular analysis of the underlying regulatory processes promises further exciting insights into the genetic control of development, pathology and the course of evolution.  相似文献   

4.
5.
6.
7.
8.
Our information on the transition between fish with fins and tetrapods with limbs and digits has increased manyfold in the last 15–20 years and especially in the last 5 or 10 years, with some spectacular finds of new material. Some of these include new tetrapod-like fish and very primitive tetrapods that help to resolve questions of the sequence of acquisition of tetrapod characters, the approximate timing of the events, the likely geographic location, and the circumstances under which it happened. Forelimbs and skulls became modified in advance of hind limbs, adapted for supporting the head and front of the body out of the water, probably in connection with air breathing. The likely time of origin for limbed tetrapods is between 385 and 380 million years ago, probably in the northern continent of Laurussia. The origin of limbed tetrapods did not coincide with the acquisition of full terrestriality, an outcome that probably arose in the Early Carboniferous. This later part of the story is documented by few fossils, though two in particular give key information. Studies of modern vertebrates, especially the evolutionary developmental genetics of Hox genes, are beginning to provide clues to the origin of digits.  相似文献   

9.
Mammals have ten voltage-dependent sodium (Nav) channel genes. Nav channels are expressed in different cell types with different subcellular distributions and are critical for many aspects of neuronal processing. The last common ancestor of teleosts and tetrapods had four Nav channel genes, presumably on four different chromosomes. In the lineage leading to mammals, a series of tandem duplications on two of these chromosomes more than doubled the number of Nav channel genes. It is unknown when these duplications occurred and whether they occurred against a backdrop of duplication of flanking genes on their chromosomes or as an expansion of ion channel genes in general. We estimated key dates of the Nav channel gene family expansion by phylogenetic analysis using teleost, elasmobranch, lungfish, amphibian, avian, lizard, and mammalian Nav channel sequences, as well as chromosomal synteny for tetrapod genes. We tested, and exclude, the null hypothesis that Nav channel genes reside in regions of chromosomes prone to duplication by demonstrating the lack of duplication or duplicate retention of surrounding genes. We also find no comparable expansion in other voltage-dependent ion channel gene families of tetrapods following the teleost-tetrapod divergence. We posit a specific expansion of the Nav channel gene family in the Devonian and Carboniferous periods when tetrapods evolved, diversified, and invaded the terrestrial habitat. During this time, the amniote forebrain evolved greater anatomical complexity and novel tactile sensory receptors appeared. The duplication of Nav channel genes allowed for greater regional specialization in Nav channel expression, variation in subcellular localization, and enhanced processing of somatosensory input.  相似文献   

10.
Recently Peters proposed the concept of ‘interphalangeal lines’, defined as sub-parallel lines that could supposedly be drawn across the joints of the digits of all tetrapods. The lines were viewed as potential axes of rotation, and it was suggested that they could be used to determine the resting position of the digits, reconstruct missing digital elements of fossil tetrapods, and provide information on systematic relationships. Evidence was adduced from the skeletons of recent and fossil vertebrates and from footprints. However, detailed analysis shows that these claims are largely unfounded. Linear alignments of joints on neighbouring digits are not consistently present in tetrapods, especially across locomotor cycles. Even if present, interphalangeal (IP) lines would rarely be in an appropriate orientation to facilitate joint movements during locomotion. There is no reason to believe that IP lines would be homologous across different taxa, so they cannot be used to infer systematic relationships. Finally, the alleged support from the ichnological record is undermined by the uncertain relationship between the joint structure of the skeleton and the form of the print. We conclude that IP lines cannot be consistently constructed on tetrapod extremities, and would have minimal functional relevance or predictive power in any case.  相似文献   

11.

Background  

Gene clusters are of interest for the understanding of genome evolution since they provide insight in large-scale duplications events as well as patterns of individual gene losses. Vertebrates tend to have multiple copies of gene clusters that typically are only single clusters or are not present at all in genomes of invertebrates. We investigated the genomic architecture and conserved non-coding sequences of vertebrate KCNA gene clusters. KCNA genes encode shaker-related voltage-gated potassium channels and are arranged in two three-gene clusters in tetrapods. Teleost fish are found to possess four clusters. The two tetrapod KNCA clusters are of approximately the same age as the Hox gene clusters that arose through duplications early in vertebrate evolution. For some genes, their conserved retention and arrangement in clusters are thought to be related to regulatory elements in the intergenic regions, which might prevent rearrangements and gene loss. Interestingly, this hypothesis does not appear to apply to the KCNA clusters, as too few conserved putative regulatory elements are retained.  相似文献   

12.
Human beings have been credited with unparalleled capabilities for digital prehension grasping. However, grasping behaviour is widespread among tetrapods. The propensity to grasp, and the anatomical characteristics that underlie it, appear in all of the major groups of tetrapods with the possible exception of terrestrial turtles. Although some features are synapomorphic to the tetrapod clade, such as well‐defined digits and digital musculature, other features, such as opposable digits and tendon configurations, appear to have evolved independently in many lineages. Here we examine the incidence, functional morphology, and evolution of grasping across four major tetrapod clades. Our review suggests that the ability to grasp with the manus and pes is considerably more widespread, and ecologically and evolutionarily important, than previously thought. The morphological bases and ecological factors that govern grasping abilities may differ among tetrapods, yet the selective forces shaping them are likely similar. We suggest that further investigation into grasping form and function within and among these clades may expose a greater role for grasping ability in the evolutionary success of many tetrapod lineages.  相似文献   

13.
The identity of avian digits has been unresolved since the beginning of evolutionary morphology in the mid-19th century, i.e. as soon as questions of phylogenetic homology have been raised. The main source of concern is the persistent discrepancy between anatomical/paleontological and embryological evidence over the identity of avian digits. In this paper, recent evidence pertaining to the question of avian digit homology is reviewed and the various ideas of how to resolve the disagreement among developmental and phylogenetic evidence are evaluated. Paleontological evidence unequivocally supports the hypothesis that the fully formed digits of maniraptoran theropods are digits DI, DII, and DIII, because the phylogenetic position of Herrerasaurus is resolved, even when hand characters are excluded from the analysis. Regarding the developmental origin of the three digits of the avian hand the discovery of an anterior digit condensation in the limb bud of chickens and ostriches conclusively shows that these three digits are developing from condensations CII, CIII, and CIV. The existence of this additional anterior condensation has been confirmed in four different labs, using four different methods: Alcian blue staining, PNA affinity histochemistry, micro-capillary regression and Sox9 expression. Finally, recent evidence shows that the digit developing from condensation CII has a Hox gene expression pattern that is found in digit DI of mice forelimb and chick hind limbs. The sum of these data supports the idea that digit identity has shifted relative to the location of condensations, known as Frame Shift Hypothesis, such that condensation CII develops into digit DI and condensation CIII develops into digit DII, etc. A review of the literature on the digit identity of the Italian Three-toed Skink or Luscengola (Chalcides chalcides), shows that digit identity frame shifts may not be limited to the bird hand but may be characteristic of “adaptive” digit reduction in amniotes (sensu Steiner, H., Anders, G., 1946. Zur Frage der Entstehung von Rudimenten. Die Reduktion der Gliedmassen von Chalcides tridactylus Laur. Rev. Suisse Zool. 53, 537–546) in general. In this mode of evolution two digits are lost, in the course of the adaptation of the three anterior digits to a function that does not require the two posterior digits. This evidence suggests that the evolution of digits in tetrapods can proceed at least on two distinct levels of integration, the level of digit condensations and that of adult digits.  相似文献   

14.
15.
SUMMARY Phylogenetic reconstructions suggest that the ancestral osteichthyan Hox paralog group 2 gene complement was composed of two genes, Hoxa2 and b2 , both of which have been retained in tetrapods, but only one of which functions as a selector gene of second pharyngeal arch identity (PA2). Genome duplication at the inception of the teleosts likely generated four Hox PG2 genes, only two of which, hoxa2b and b2a , have been preserved in zebrafish, where they serve as functionally redundant PA2 selector genes. Evidence from our laboratory has shown that other telelosts, specifically striped bass and Nile tilapia, harbor three transcribed Hox PG2 genes, hoxa2a, a2b , and b2a , with unspecified function(s). We have focused on characterizing the function of the three Nile tilapia Hox PG2 genes as a model to examine the effects of postgenome duplication gene loss on the evolution of developmental gene function. We studied Hox PG2 gene function in tilapia by examining the effects of independent morpholino oligonucleotide (MO)-induced knockdowns on pharyngeal arch morphology and Hox gene expression patterns. Morphological defects resulting from independent MO-induced knockdowns of tilapia hoxa2a, a2b , and b2a included the expected PA2 to PA1 homeotic transformations previously observed in tetrapods and zebrafish, as well as concordant and unexpected morphological changes in posterior arch-derived cartilages. Of particular interest, was the observation of a MO-induced supernumerary arch between PA6 and PA7, which occurred concomitantly with other MO-induced pharyngeal arch defects. Beyond these previously unreported morphant-induced transformations, a comparison of Hox PG2 gene expression patterns in tilapia Hox PG2 morphants were indicative of arch-specific auto- and cross-regulatory activities as well as a Hox paralog group 2 interdependent regulatory network for control of pharyngeal arch specification.  相似文献   

16.
We report the characterization of three Emx genes in a chondrichthyan, the dogfish Scyliorhinus canicula. Comparisons of these genes with their osteichthyan counterparts indicate that the gnathostome Emx genes belong to three distinct orthology classes, each containing one of the dogfish genes and either the tetrapod Emx1 genes (Emx1 class), the osteichthyan Emx2 genes (Emx2 class) or the zebrafish Emx1 gene (Emx3 class). While the three classes could be retrieved from the pufferfish genome data, no indication of an Emx3-related gene in tetrapods could be found in the databases, suggesting that this class may have been lost in this taxon. Expression pattern comparisons of the three dogfish Emx genes and their osteichthyan counterparts indicate that not only telencephalic, but also diencephalic Emx expression territories are highly conserved among gnathostomes. In particular, all gnathostomes share an early, dynamic phase of Emx expression, spanning presumptive dorsal diencephalic territories, which involves Emx3 in the dogfish, but another orthology class, Emx2, in tetrapods. In addition, the dogfish Emx2 gene shows a highly specific expression domain in the cephalic paraxial mesoderm from the end of gastrulation and throughout neurulation, which suggests a role in the segmentation of the cephalic mesoderm.  相似文献   

17.
Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs) and 4 light chains. In the case of humans (tetrapod), a total of 6 fast skeletal-type MYH genes (MYHs) are clustered on a single chromosome. In contrast, torafugu (teleost) contains at least 13 fast skeletal MYHs, which are distributed in 5 genomic regions; the MYHs are clustered in 3 of these regions. In the present study, the evolutionary relationship among fast skeletal MYHs is elucidated by comparing the MYHs of teleosts and tetrapods with those of cyclostome lampreys, one of two groups of extant jawless vertebrates (agnathans). We found that lampreys contain at least 3 fast skeletal MYHs, which are clustered in a head-to-tail manner in a single genomic region. Although there was apparent synteny in the corresponding MYH cluster regions between lampreys and tetrapods, phylogenetic analysis indicated that lamprey and tetrapod MYHs have independently duplicated and diversified. Subsequent transgenic approaches showed that the 5′-flanking sequences of Japanese lamprey fast skeletal MYHs function as a regulatory sequence to drive specific reporter gene expression in the fast skeletal muscle of zebrafish embryos. Although zebrafish MYH promoters showed apparent activity to direct reporter gene expression in myogenic cells derived from mice, promoters from Japanese lamprey MYHs had no activity. These results suggest that the muscle-specific regulatory mechanisms are partially conserved between teleosts and tetrapods but not between cyclostomes and tetrapods, despite the conserved synteny.  相似文献   

18.
Past research on the emergence of digit-bearing tetrapods has led to the widely accepted premise that this important evolutionary event occurred during the Late Devonian. The discovery of convincing digit-bearing tetrapod trackways of early Middle Devonian age in Poland has upset this orthodoxy, indicating that current scenarios which link the timing of the origin of digited tetrapods to specific events in Earth history are likely to be in error. Inspired by this find, we examine the fossil record of early digit-bearing tetrapods and their closest fish-like relatives from a statistical standpoint. We find that the Polish trackways force a substantial reconsideration of the nature of the early tetrapod record when only body fossils are considered. However, the effect is less drastic (and often not statistically significant) when other reliably dated trackways that were previously considered anachronistic are taken into account. Using two approaches, we find that 95 per cent credible and confidence intervals for the origin of digit-bearing tetrapods extend into the Early Devonian and beyond, spanning late Emsian to mid Ludlow. For biologically realistic diversity models, estimated genus-level preservation rates for Devonian digited tetrapods and their relatives range from 0.025 to 0.073 per lineage-million years, an order of magnitude lower than species-level rates for groups typically considered to have dense records. Available fossils of early digited tetrapods and their immediate relatives are adequate for documenting large-scale patterns of character acquisition associated with the origin of terrestriality, but low preservation rates coupled with clear geographical and stratigraphic sampling biases caution against building scenarios for the origin of digits and terrestrialization tied to the provenance of particular specimens or faunas.  相似文献   

19.
Within developmental biology, the digits of the wing of birds are considered on embryological grounds to be digits 2, 3 and 4. In contrast, within paleontology, wing digits are named 1, 2, 3 as a result of phylogenetic analysis of fossil taxa indicating that birds descended from theropod dinosaurs that had lost digits 4 and 5. It has been argued that the development of the wing does not support the conclusion that birds are theropods, and that birds must have descended from ancestors that had lost digits 1 and 5. Here we use highly conserved gene expression patterns in the developing limbs of mouse and chicken, including the chicken talpid(2)mutant and polydactylous Silkie breed (Silkie mutant), to aid the assessment of digital identity in the wing. Digit 1 in developing limbs does not express Hoxd12, but expresses Hoxd13. All other digits express both Hoxd12and Hoxd13. We found this signature expression pattern identifies the anteriormost digit of the wing as digit 1, in accordance with the hypothesis these digits are 1, 2 and 3, as in theropod dinosaurs. Our evidence contradicts the long-standing argument that the development of the wing does not support the hypothesis that birds are living dinosaurs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号