首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many adult tissues and organs including the intestine rely on resident stem cells to maintain homeostasis and regeneration. In mammals, the progenies of intestinal stem cells (ISCs) can dedifferentiate to generate ISCs upon ablation of resident stem cells. However, whether and how mature tissue cells generate ISCs under physiological conditions remains unknown. Here, we show that infection of the Drosophila melanogaster intestine with pathogenic bacteria induces entry of enteroblasts (EBs), which are ISC progenies, into the mitotic cycle through upregulation of epidermal growth factor receptor (EGFR)‐Ras signaling. We also show that ectopic activation of EGFR‐Ras signaling in EBs is sufficient to drive enteroblast mitosis cell autonomously. Furthermore, we find that the dividing enteroblasts do not gain ISC identity as a prerequisite to divide, and the regenerative ISCs are produced through EB mitosis. Taken together, our work uncovers a new role for EGFR‐Ras signaling in driving EB mitosis and replenishing the ISC pool during fly intestinal regeneration, which may have important implications for tissue homeostasis and tumorigenesis in vertebrates.  相似文献   

2.
Many tissues in higher animals undergo dynamic homeostatic growth, wherein damaged or aged cells are replaced by the progeny of resident stem cells. To maintain homeostasis, stem cells must respond to tissue needs. Here we show that in response to damage or stress in the intestinal (midgut) epithelium of adult Drosophila, multiple EGFR ligands and rhomboids (intramembrane proteases that activate some EGFR ligands) are induced, leading to the activation of EGFR signaling in intestinal stem cells (ISCs). Activation of EGFR signaling promotes ISC division and midgut epithelium regeneration, thereby maintaining tissue homeostasis. ISCs defective in EGFR signaling cannot grow or divide, are poorly maintained, and cannot support midgut epithelium regeneration after enteric infection by the bacterium Pseudomonas entomophila. Furthermore, ISC proliferation induced by Jak/Stat signaling is dependent upon EGFR signaling. Thus the EGFR/Ras/MAPK signaling pathway plays central, essential roles in ISC maintenance and the feedback system that mediates intestinal homeostasis.  相似文献   

3.
The Drosophila adult posterior midgut has been identified as a powerful system in which to study mechanisms that control intestinal maintenance, in normal conditions as well as during injury or infection. Early work on this system has established a model of tissue turnover based on the asymmetric division of intestinal stem cells. From the quantitative analysis of clonal fate data, we show that tissue turnover involves the neutral competition of symmetrically dividing stem cells. This competition leads to stem-cell loss and replacement, resulting in neutral drift dynamics of the clonal population. As well as providing new insight into the mechanisms regulating tissue self-renewal, these findings establish intriguing parallels with the mammalian system, and confirm Drosophila as a useful model for studying adult intestinal maintenance.  相似文献   

4.
Stem cells have essential functions in the development and maintenance of our organs. Improper regulation of adult stem cells and tissue homeostasis can result in cancers and age-dependent decline. Therefore, understanding how tissue-specific stem cells can accurately renew tissues is an important aim of regenerative medicine. The Drosophila midgut harbors multipotent adult stem cells that are essential to renew the gut in homeostatic conditions and upon stress-induced regeneration. It is now a widely used model system to decipher regulatory mechanisms of stem cell biology. Here, we review recent findings on how adult intestinal stem cells differentiate, interact with their environment, and change during aging.  相似文献   

5.
Adult organ-specific stem cells are essential for organ homeostasis and repair in adult vertebrates. The intestine is one of the best-studied organs in this regard. The intestinal epithelium undergoes constant self-renewal throughout adult life across vertebrates through the proliferation and subsequent differentiation of the adult stem cells. This self-renewal system is established late during development, around birth, in mammals when endogenous thyroid hormone (T3) levels are high. Amphibian metamorphosis resembles mammalian postembryonic development around birth and is totally dependent upon the presence of high levels of T3. During this process, the tadpole intestine, predominantly a monolayer of larval epithelial cells, undergoes drastic transformation. The larval epithelial cells undergo apoptosis and concurrently, adult epithelial stem/progenitor cells develop de novo, rapidly proliferate, and then differentiate to establish a trough-crest axis of the epithelial fold, resembling the crypt-villus axis in the adult mammalian intestine. We and others have studied the T3-dependent remodeling of the intestine in Xenopus laevis. Here we will highlight some of the recent findings on the origin of the adult intestinal stem cells. We will discuss observations suggesting that liganded T3 receptor (TR) regulates cell autonomous formation of adult intestinal progenitor cells and that T3 action in the connective tissue is important for the establishment of the stem cell niche. We will further review evidence suggesting similar T3-dependent formation of adult intestinal stem cells in other vertebrates.  相似文献   

6.
Edgar BA 《The EMBO journal》2012,31(11):2441-2443
To maintain tissue homeostasis, stem cells must balance self-renewal with differentiation. In some stem cell lineages this process is 'hard-wired' by the asymmetric partitioning of determinants at division, such that one stem cell daughter always remains pluripotent and other differentiates. But in a dynamic tissue like the intestinal epithelium, which might need to repair itself following an infection or expand to digest the fall harvest, this balancing act requires more flexibility. Recent studies of intestinal stem cell (ISC) lineages in the fruit fly and mouse provide new insights into how this plasticity is achieved. The mechanisms in these two homologous but rather different organs have remarkable similarities, and so are likely relevant to how stem cell pools are controlled in organs other than the intestine.  相似文献   

7.
Aiguo Tian 《Fly》2017,11(4):297-302
Many adult organs including Drosophila adult midguts rely on resident stem cells to replenish damaged cells during tissue homeostasis and regeneration. Previous studies have shown that, upon injury, intestinal stem cells (ISCs) in the midguts can increase proliferation and lineage differentiation to meet the demand for tissue repair. Our recent study has demonstrated that, in response to certain injury, midguts can expand ISC population size as an additional regenerative mechanism. We found that injury elicited by bleomycin feeding or bacterial infection increased the production of two BMP ligands (Dpp and Gbb) in enterocytes (ECs), leading to elevated BMP signaling in progenitor cells that drove an expansion of ISCs by promoting their symmetric self-renewing division. Interestingly, we also found that BMP signaling in ECs inhibits the production of Dpp and Gbb, and that this negative feedback mechanism is required to reset ISC pool size to the homeostatic state. Our findings suggest that BMP signaling exerts two opposing influences on stem cell activity depending on where it acts: BMP signaling in progenitor cells promotes ISC self-renewal while BMP signaling in ECs restricts ISC self-renewal by preventing excessive production of BMP ligands. Our results further suggest that transient expansion of ISC population in conjunction with increasing ISC proliferation provides a more effective strategy for tissue regeneration.  相似文献   

8.
Adult organ-specific stem cells are essential for organ homeostasis and repair in adult vertebrates. The intestine is one of the best-studied organs in this regard. The intestinal epithelium undergoes constant self-renewal throughout adult life across vertebrates through the proliferation and subsequent differentiation of the adult stem cells. This self-renewal system is established late during development, around birth, in mammals when endogenous thyroid hormone (T3) levels are high. Amphibian metamorphosis resembles mammalian postembryonic development around birth and is totally dependent upon the presence of high levels of T3. During this process, the tadpole intestine, predominantly a monolayer of larval epithelial cells, undergoes drastic transformation. The larval epithelial cells undergo apoptosis and concurrently, adult epithelial stem/progenitor cells develop de novo, rapidly proliferate, and then differentiate to establish a trough-crest axis of the epithelial fold, resembling the crypt-villus axis in the adult mammalian intestine. We and others have studied the T3-dependent remodeling of the intestine in Xenopus laevis. Here we will highlight some of the recent findings on the origin of the adult intestinal stem cells. We will discuss observations suggesting that liganded T3 receptor (TR) regulates cell autonomous formation of adult intestinal progenitor cells and that T3 action in the connective tissue is important for the establishment of the stem cell niche. We will further review evidence suggesting similar T3-dependent formation of adult intestinal stem cells in other vertebrates.  相似文献   

9.
Stem cell‐mediated tissue repair is a promising approach for many diseases. Mammalian intestine is an actively regenerating tissue such that epithelial cells are constantly shedding and underlying precursor cells are constantly replenishing the loss of cells. An imbalance of these processes will lead to intestinal diseases including inflammation and cancer. Mammalian intestinal stem cells (ISCs) are located in bases of crypts but at least two groups of cells have been cited as stem cells. Moreover, precursor cells in the transit amplifying zone can also proliferate. The involvement of multiple cell types makes it more difficult to examine tissue damage response in mammalian intestine. In adult Drosophila midgut, the ISCs are the only cells that can go through mitosis. By feeding pathogenic bacteria and stress inducing chemicals to adult flies, we demonstrate that Drosophila ISCs in the midgut can respond by increasing their division. The resulting enteroblasts, precursor cells for enterocytes and enteroendocrine cells, also differentiate faster to become cells resembling enterocyte lineage. These results are consistent with the idea that Drosophila midgut stem cells can respond to tissue damage induced by pathogens and initiate tissue repair. This system should allow molecular and genetic analyses of stem cell‐mediated tissue repair. J. Cell. Physiol. 220: 664–671, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Although some animals are capable of regenerating organs, the mechanisms by which this is achieved are poorly understood. In planarians, pluripotent somatic stem cells called neoblasts supply new cells for growth, replenish tissues in response to cellular turnover, and regenerate tissues after injury. For most tissues and organs, however, the spatiotemporal dynamics of stem cell differentiation and the fate of tissue that existed prior to injury have not been characterized systematically. Utilizing in vivo imaging and bromodeoxyuridine pulse-chase experiments, we have analyzed growth and regeneration of the planarian intestine, the organ responsible for digestion and nutrient distribution. During growth, we observe that new gut branches are added along the entire anteroposterior axis. We find that new enterocytes differentiate throughout the intestine rather than in specific growth zones, suggesting that branching morphogenesis is achieved primarily by remodeling of differentiated intestinal tissues. During regeneration, we also demonstrate a previously unappreciated degree of intestinal remodeling, in which pre-existing posterior gut tissue contributes extensively to the newly formed anterior gut, and vice versa. By contrast to growing animals, differentiation of new intestinal cells occurs at preferential locations, including within newly generated tissue (the blastema), and along pre-existing intestinal branches undergoing remodeling. Our results indicate that growth and regeneration of the planarian intestine are achieved by co-ordinated differentiation of stem cells and the remodeling of pre-existing tissues. Elucidation of the mechanisms by which these processes are integrated will be critical for understanding organogenesis in a post-embryonic context.  相似文献   

11.
Sarkar A  Hochedlinger K 《Cell》2011,147(3):487-489
Adult tissues can rapidly and reversibly change size to adapt to environmental and behavioral influences. In this issue, O'Brien et al. (2011) demonstrate that fly intestinal stem cells alter their division patterns in response to food availability to drive organ growth.  相似文献   

12.
《Fly》2013,7(4):173-177
ABSTRACT

In this Extra View, we extend our recent work on the protein LIN-28 and its role in adult stem cell divisions. LIN-28 is an mRNA- and microRNA-binding protein that is conserved from worms to humans. When expressed ectopically, it promotes the reprogramming of differentiated vertebrate cells into pluripotent stem cells as well as the regeneration of vertebrate tissues after injury. However, its endogenous function in stem cell populations is less clear. We recently reported that LIN-28 is specifically expressed in progenitor cells in the adult Drosophila intestine and enhances insulin signaling within this population. Loss of lin-28 alters the division patterns of these progenitor cells, limiting the growth of the intestinal epithelium that is ordinarily caused by feeding. Thus, LIN-28 is part of an uncharacterized circuit used to remodel a tissue in response to environmental cues like nutrition. Here, we extend this analysis by reporting that the levels of LIN-28 in progenitor cells are sensitive to nutrient availability. In addition, we speculate about the role of LIN-28 in the translational control of target mRNAs such as Insulin Receptor (InR) and how such translational control may be an important mechanism that underlies the stem cell dynamics needed for tissue homeostasis and growth.  相似文献   

13.
Adipose-derived adult stem cells for cartilage tissue engineering   总被引:9,自引:0,他引:9  
Guilak F  Awad HA  Fermor B  Leddy HA  Gimble JM 《Biorheology》2004,41(3-4):389-399
Tissue engineering is a promising therapeutic approach that uses combinations of implanted cells, biomaterial scaffolds, and biologically active molecules to repair or regenerate damaged or diseased tissues. Many diverse and increasingly complex approaches are being developed to repair articular cartilage, with the underlying premise that cells introduced exogenously play a necessary role in the success of engineered tissue replacements. A major consideration that remains in this field is the identification and characterization of appropriate sources of cells for tissue-engineered repair of cartilage. In particular, there has been significant emphasis on the use of undifferentiated progenitor cells, or "stem" cells that can be expanded in culture and differentiated into a variety of different cell types. Recent studies have identified the presence of an abundant source of stem cells in subcutaneous adipose tissue. These cells, termed adipose-derived adult stem (ADAS) cells, show characteristics of multipotent adult stem cells, similar to those of bone marrow derived mesenchymal stem cells (MSCs), and under appropriate culture conditions, synthesize cartilage-specific matrix proteins that are assembled in a cartilaginous extracellular matrix. The growth and chondrogenic differentiation of ADAS cells is strongly influenced by factors in the biochemical as well as biophysical environment of the cells. Furthermore, there is strong evidence that the interaction between the cells, the extracellular biomaterial substrate, and growth factors regulate ADAS cell differentiation and tissue growth. Overall, ADAS cells show significant promise for the development of functional tissue replacements for various tissues of the musculoskeletal system.  相似文献   

14.
Many adult stem cells divide asymmetrically to balance self-renewal and differentiation, thereby maintaining tissue homeostasis. Asymmetric stem cell divisions depend on asymmetric cell architecture (i.e., cell polarity) within the cell and/or the cellular environment. In particular, as residents of the tissues they sustain, stem cells are inevitably placed in the context of the tissue architecture. Indeed, many stem cells are polarized within their microenvironment, or the stem cell niche, and their asymmetric division relies on their relationship with the microenvironment. Here, we review asymmetric stem cell divisions in the context of the stem cell niche with a focus on Drosophila germ line stem cells, where the nature of niche-dependent asymmetric stem cell division is well characterized.Asymmetric cell division allows stem cells to self-renew and produce another cell that undergoes differentiation, thus providing a simple method for tissue homeostasis. Stem cell self-renewal refers to the daughter(s) of stem cell division maintaining all stem cell characteristics, including proliferation capacity, maintenance of the undifferentiated state, and the capability to produce daughter cells that undergo differentiation. A failure to maintain the correct stem cell number has been speculated to lead to tumorigenesis/tissue hyperplasia via stem cell hyperproliferation or tissue degeneration/aging via a reduction in stem cell number or activity (Morrison and Kimble 2006; Rando 2006). This necessity changes during development. The stem cell pool requires expansion earlier in development, whereas maintenance is needed later to sustain tissue homeostasis.There are two major mechanisms to sustain a fixed number of adult stem cells: stem cell niche and asymmetric stem cell division, which are not mutually exclusive. Stem cell niche is a microenvironment in which stem cells reside, and provides essential signals required for stem cell identity (Fig. 1A). Physical limitation of niche “space” can therefore define stem cell number within a tissue. Within such a niche, many stem cells divide asymmetrically, giving rise to one stem cell and one differentiating cell, by placing one daughter inside and another outside of the niche, respectively (Fig. 1A). Nevertheless, some stem cells divide asymmetrically, apparently without the niche. For example, in Drosophila neuroblasts, cell-intrinsic fate determinants are polarized within a dividing cell, and subsequent partitioning of such fate determinants into daughter cells in an asymmetric manner results in asymmetric stem cell division (Fig. 1B) (see Fig. 3A and Prehoda 2009).Open in a separate windowFigure 1.Mechanisms of asymmetric stem cell division. (A) Asymmetric stem cell division by extrinsic fate determinants (i.e., the stem cell niche). The two daughters of stem cell division will be placed in distinct cellular environments either inside or outside the stem cell niche, leading to asymmetric fate choice. (B) Asymmetric stem cell division by intrinsic fate determinants. Fate determinants are polarized in the dividing stem cells, which are subsequently partitioned into two daughter cells unequally, thus making the division asymmetrical. Self-renewing (red line) and/or differentiation promoting (green line) factors may be involved.In this review, we focus primarily on asymmetric stem cell divisions in the Drosophila germ line as the most intensively studied examples of niche-dependent asymmetric stem cell division. We also discuss some examples of stem cell division outside Drosophila, where stem cells are known to divide asymmetrically or in a niche-dependent manner.  相似文献   

15.
Endothelial progenitor cells for postnatal vasculogenesis   总被引:26,自引:0,他引:26  
In the past decade, researchers have defined committed stem or progenitor cells from various tissues, including bone marrow, peripheral blood, brain, liver, and reproductive organs, in both adult animals and humans. Whereas most cells in adult organs are composed of differentiated cells, which express a variety of specific phenotypic genes adapted to each organ's environment, quiescent stem or progenitor cells are maintained locally or in the systemic circulation and are activated by environmental stimuli for physiological and pathological tissue regeneration. Recently, endothelial progenitor cells (EPCs) were isolated from peripheral blood CD34, Flk-1, or AC133 antigen-positive cells, which are considered to include a hematopoietic stem cell population, and were shown to be incorporated into foci of neovascularization. This finding, that circulating EPCs may home to sites of neovascularization and differentiate into endothelial cells in situ, is consistent with "vasculogenesis," a critical paradigm for embryonic neovascularization, and suggests that vasculogenesis and angiogenesis may constitute complementary mechanisms for postnatal neovascularization. Previous reports demonstrating therapeutic potential of EPC transplantation in animal models of hindlimb and myocardial ischemia opened the way to the clinical application of cell therapy: the replacement of diseased or degenerating cell populations, tissues, and organs. In this review, we summarize biological features of EPCs and speculate on the utility of EPCs for vascular and general medicine. cell transplantation; ischemia; neovascularization; stem cell  相似文献   

16.
Intestinal stem cells (ISCs) in the adult Drosophila melanogaster midgut can respond to damage and support repair. We demonstrate in this paper that the tuberous sclerosis complex (TSC) plays a critical role in balancing ISC growth and division. Previous studies have shown that imaginal disc cells that are mutant for TSC have increased rates of growth and division. However, we report in this paper that loss of TSC in the adult Drosophila midgut results in the formation of much larger ISCs that have halted cell division. These mutant ISCs expressed proper stem cell markers, did not differentiate, and had defects in multiple steps of the cell cycle. Slowing the growth by feeding rapamycin or reducing Myc was sufficient to rescue the division defect. The TSC mutant guts had a thinner epithelial structure than wild-type tissues, and the mutant flies were more susceptible to tissue damage. Therefore, we have uncovered a context-dependent phenotype of TSC mutants in adult ISCs, such that the excessive growth leads to inhibition of division.  相似文献   

17.
Cell proliferation and differentiation are two distinct yet coupled processes in development in diverse organisms. Understanding the molecular mechanisms that regulate this process is a central theme in developmental biology. The intestinal epithelium is a highly complex tissue that relies on the coordination of cell proliferation within the crypts and apoptosis mainly at the tip of the villi, preservation of epithelial function through differentiation, and homeostatic cell migration along the crypt-villus axis. Small populations of adult stem cells are responsible for the self-renewal of the epithelium throughout life. Surprisingly, much less is known about the mechanisms governing the remodeling of the intestine from the embryonic to adult form. Furthermore, it remains unknown how thyroid hormone (T3) affects stem cell development during this postembryonic process, which is around birth in mammals when T3 level increase rapidly in the plasma. Tissue remodeling during amphibian metamorphosis is very similar to the maturation of the mammalian organs around birth in mammals and is regulated by T3. In particular, many unique features of Xenopus intestinal remodeling during metamorphosis has enabled us and others to elucidate how adult stem cells are formed during postembryonic development in vertebrates. In this review, we will focus on recent findings on the role of Mad1/c-Myc in cell death and proliferation during intestinal metamorphosis and discuss how a Mad1–c-Myc balance controls intestinal epithelial cell fate during this T3-dependent process.  相似文献   

18.
Recently organoids have become widely used in vitro models of many tissue and organs. These type of structures, originated from embryonic or adult mammalian intestines, are called “mini guts”. They organize spontaneously when intestinal crypts or stem cells are embedded in the extracellular matrix proteins preparation scaffold (Matrigel). This approach has some disadvantages, as Matrigel is undefined (the concentrations of growth factors and other biologically active components in it may vary from batch to batch), difficult to handle and expensive. Here we show that the organoids derived from chicken embryo intestine are formed in a hanging drop without embedding, providing an attractive alternative for currently used protocols. Using this technique we obtained compact structures composed of contiguous organoids, which were generally similar to chicken organoids cultured in Matrigel in terms of morphology and expression of intestinal epithelial markers. Due to the simplicity, high reproducibility and throughput capacity of hanging drop technique our model may be applied in various studies concerning the gut biology.  相似文献   

19.
Liu XH  Tang CS 《生理科学进展》2008,39(3):196-202
近年发现干细胞具有很强的旁/自分泌功能,本文综述干细胞所分泌的生长因子、细胞因子、调节肽、细胞信号分子等生物活性因子,以及缺血、缺氧、生长因子、性别和其它激素对干细胞分泌功能的调节;并分析干细胞分泌功能在血管生成、心脏、肝脏、肾脏和神经系统保护中的作用,认为干细胞可通过其分泌功能影响靶器官结构、功能状态及其病理状态下的修复,是干细胞治疗改善靶器官功能、抗凋亡、抗炎等作用的机制之一.  相似文献   

20.
Grompe M 《Cell Stem Cell》2012,10(6):685-689
The detailed understanding of adult tissue stem cells has significance for both regenerative medicine and oncology. This perspective will discuss how major advances in our ability to identify and monitor these cells, which include genetic lineage tracing, FACS purification, and robust in vitro clonogenic assays, have changed our view of their roles in many organs. Label retention and quiescence are no longer considered obligatory stem cell features. Furthermore, some tissues have more than one type of stem cell, each used in only particular situations of regenerative stress. Thus, there is no "one size fits all" adult tissue stem cell paradigm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号