首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Autophagy》2013,9(12):1570-1572
We recently showed that phagophore biogenesis requires SNAREs. Our data indicate that the exocytic Q/t-SNAREs Sso1/2 and Sec9 are required for one of the earliest steps in autophagosome biogenesis, the homotypic fusion of Atg9-containing vesicles. We propose that this step precedes the formation of Atg9-containing tubulovesicular clusters (TVCs) that is a key step in perivacuolar, phagophore assembly. We also found that the endosomal Q/t-SNARE Tlg2 and the R/v-SNAREs Sec22 and Ykt6 interact with Sso1-Sec9, and are required for normal Atg9 trafficking. Thus, autophagosome biogenesis appears to involve multiple SNARE-mediated fusion events. These findings provide novel insights into the mechanism of autophagosome construction.  相似文献   

2.
Nair U  Klionsky DJ 《Autophagy》2011,7(12):1570-1572
We recently showed that phagophore biogenesis requires SNAREs. Our data indicate that the exocytic Q/t-SNAREs Sso1/2 and Sec9 are required for one of the earliest steps in autophagosome biogenesis, the homotypic fusion of Atg9-containing vesicles. We propose that this step precedes the formation of Atg9-containing tubulovesicular clusters (TVCs) that is a key step in perivacuolar, phagophore assembly. We also found that the endosomal Q/t-SNARE Tlg2 and the R/v-SNAREs Sec22 and Ykt6 interact with Sso1-Sec9, and are required for normal Atg9 trafficking. Thus, autophagosome biogenesis appears to involve multiple SNARE-mediated fusion events. These findings provide novel insights into the mechanism of autophagosome construction.  相似文献   

3.
Macroautophagy sequesters superflous cytosol and organelles into double-membraned autophagosomes. Over 30 autophagy-related (ATG) genes have been identified without elucidating the molecular details of autophagosome biogenesis. All proposed models for autophagosome formation require membrane fusion events (Fig. 1). Previous studies assumed that the autophagic machinery mediates these membrane fusions in a SNARE-independent manner and identified the ubiquitin-like protein Atg8 as a key component especially for elongation of the forming autophagosome. However, if and how Atg8 mediates membrane fusion and why a ubiquitin-like protein is needed for autophagosome biogenesis remained open questions. Since nuclear envelope growth and fusion of Golgi fragments are topologically similar to autophagosome formation and depend on the AAA (+) ATPase p97/VCP and p47 we analyzed the involvement of their yeast homologues Cdc48 and Shp1 in macroautophagy.  相似文献   

4.
The molecular details of the biogenesis of double-membraned autophagosomes are poorly understood. We identify the Saccharomyces cerevisiae AAA–adenosine triphosphatase Cdc48 and its substrate-recruiting cofactor Shp1/Ubx1 as novel components needed for autophagosome biogenesis. In mammals, the Cdc48 homologue p97/VCP and the Shp1 homologue p47 mediate Golgi reassembly by extracting an unknown monoubiquitinated fusion regulator from a complex. We find no requirement of ubiquitination or the proteasome system for autophagosome biogenesis but detect interaction of Shp1 with the ubiquitin-fold autophagy protein Atg8. Atg8 coupled to phosphatidylethanolamine (PE) is crucial for autophagosome elongation and, in vitro, mediates tethering and hemifusion. Interaction with Shp1 requires an FK motif within the N-terminal non–ubiquitin-like Atg8 domain. Based on our data, we speculate that autophagosome formation, in contrast to Golgi reassembly, requires a complex in which Atg8 functionally substitutes ubiquitin. This, for the first time, would give a rationale for use of the ubiquitin-like Atg8 during macroautophagy and would explain why Atg8-PE delipidation is necessary for efficient macroautophagy.  相似文献   

5.
《Autophagy》2013,9(5):780-793
Formation of the autophagosome is likely the most complex step of macroautophagy, and indeed it is the morphological and functional hallmark of this process; accordingly, it is critical to understand the corresponding molecular mechanism. Atg8 is the only known autophagy-related (Atg) protein required for autophagosome formation that remains associated with the completed sequestering vesicle. Approximately one-fourth of all of the characterized Atg proteins that participate in autophagosome biogenesis affect Atg8, regulating its conjugation to phosphatidylethanolamine (PE), localization to the phagophore assembly site and/or subsequent deconjugation. An unanswered question in the field regards the physiological role of the deconjugation of Atg8–PE. Using an Atg8 mutant that bypasses the initial Atg4-dependent processing, we demonstrate that Atg8 deconjugation is an important step required to facilitate multiple events during macroautophagy. The inability to deconjugate Atg8–PE results in the mislocalization of this protein to the vacuolar membrane. We also show that the deconjugation of Atg8–PE is required for efficient autophagosome biogenesis, the assembly of Atg9-containing tubulovesicular clusters into phagophores/autophagosomes, and for the disassembly of PAS-associated Atg components.  相似文献   

6.
A role for Atg8-PE deconjugation in autophagosome biogenesis   总被引:3,自引:0,他引:3  
Nair U  Yen WL  Mari M  Cao Y  Xie Z  Baba M  Reggiori F  Klionsky DJ 《Autophagy》2012,8(5):780-793
Formation of the autophagosome is likely the most complex step of macroautophagy, and indeed it is the morphological and functional hallmark of this process; accordingly, it is critical to understand the corresponding molecular mechanism. Atg8 is the only known autophagy-related (Atg) protein required for autophagosome formation that remains associated with the completed sequestering vesicle. Approximately one-fourth of all of the characterized Atg proteins that participate in autophagosome biogenesis affect Atg8, regulating its conjugation to phosphatidylethanolamine (PE), localization to the phagophore assembly site and/or subsequent deconjugation. An unanswered question in the field regards the physiological role of the deconjugation of Atg8-PE. Using an Atg8 mutant that bypasses the initial Atg4-dependent processing, we demonstrate that Atg8 deconjugation is an important step required to facilitate multiple events during macroautophagy. The inability to deconjugate Atg8-PE results in the mislocalization of this protein to the vacuolar membrane. We also show that the deconjugation of Atg8-PE is required for efficient autophagosome biogenesis, the assembly of Atg9-containing tubulovesicular clusters into phagophores/autophagosomes, and for the disassembly of PAS-associated Atg components.  相似文献   

7.
《Autophagy》2013,9(6):808-809
Yeast Atg8, a key factor in the autophagic process, is a ubiquitin-like protein that undergoes a unique conjugation to phosphatidylethanolamine (PE). Atg8 plays a dual role in early stages of autophagosome formation: It was implicated in recruitment of cargo proteins such as Atg19 and Atg32 for Cvt and mitophagy, respectively, and in autophagosome biogenesis, serving as an elongation factor by mediating membrane hemi-fusion. Similarly, the mammalian Atg8 proteins, LC3s and GABARAPs, recruit cargo into autophagosomes by binding to adaptor proteins such as p62, NBR1 and Nix. These functions, however, are not essential for bulk autophagic flux. Other studies in which the activity of the mammalian Atg8s was blocked either by knockout of the E2-like enzyme Atg3 or by using a dominant negative mutant of the promiscuous protease Atg4B revealed, in agreement with the yeast Atg8 data, that the mammalian factors are crucial for the formation of normal and mature autophagosomes. While it seems that the single yeast Atg8 and the mammalian Atg8s share similar roles, it is still unclear why the mammalian system employs several homologs. Recent publications demonstrated that the mammalian Atg8s differ in their cargo specificity, as Nix, for example, binds exclusively to GABARAP-L1. This may suggest that these proteins exhibit distinct activity also in autophagosome biogenesis. In our study we divided the mammalian Atg8s into two subfamilies of homologs based on amino acid similarity, the LC3 and GABARAP/GATE-16 subfamilies, and tested their essentiality and role in autophagy. In agreement with previous studies we found that the mammalian Atg8s are essential for autophagy but, more importantly, that each of these subfamilies has a distinct role in the process of autophagosome biogenesis.  相似文献   

8.
Autophagy is a catabolic pathway for the degradation of cytosolic proteins or organelles and is conserved among all eukaryotic cells. The hallmark of autophagy is the formation of double-membrane cytosolic vesicles, termed autophagosomes, which sequester cytoplasm; however, the mechanism of vesicle formation and the membrane source remain unclear. In the yeast Saccharomyces cerevisiae, selective autophagy mediates the delivery of specific cargos to the vacuole, the analog of the mammalian lysosome. The transmembrane protein Atg9 cycles between the mitochondria and the pre-autophagosomal structure, which is the site of autophagosome biogenesis. Atg9 is thought to mediate the delivery of membrane to the forming autophagosome. Here, we characterize a second transmembrane protein Atg27 that is required for specific autophagy in yeast. Atg27 is required for Atg9 cycling and shuttles between the pre-autophagosomal structure, mitochondria, and the Golgi complex. These data support a hypothesis that multiple membrane sources supply the lipids needed for autophagosome formation.  相似文献   

9.
Autophagy is a degradative pathway during which autophagosomes are formed that enwrap cytosolic material destined for turnover within the lytic compartment. Autophagosome biogenesis requires controlled lipid and membrane rearrangements to allow the formation of an autophagosomal seed and its subsequent elongation into a fully closed and fusion-competent double membrane vesicle. Different membrane remodeling events are required, which are orchestrated by the distinct autophagy machinery. An important player among these autophagy proteins is the small lipid-modifier Atg8. Atg8 proteins facilitate various aspects of autophagosome formation and serve as a binding platform for autophagy factors. Also Rab GTPases have been implicated in autophagosome biogenesis. As Atg8 proteins interact with several Rab GTPase regulators, they provide a possible link between autophagy progression and Rab GTPase activity. Here, we review central aspects in membrane dynamics during autophagosome biogenesis with a focus on Atg8 proteins and selected Rab GTPases.  相似文献   

10.
Nakatogawa H  Ishii J  Asai E  Ohsumi Y 《Autophagy》2012,8(2):177-186
Atg8 is a ubiquitin-like protein required for autophagy in the budding yeast Saccharomyces cerevisiae. A ubiquitin-like system mediates the conjugation of the C terminus of Atg8 to the lipid phosphatidylethanolamine (PE), and this conjugate (Atg8-PE) plays a crucial role in autophagosome formation at the phagophore assembly site/pre-autophagosomal structure (PAS). The cysteine protease Atg4 processes the C terminus of newly synthesized Atg8 and also delipidates Atg8 to release the protein from membranes. While the former is a prerequisite for lipidation of Atg8, the significance of the latter in autophagy has remained unclear. Here, we show that autophagosome formation is significantly retarded in cells deficient for Atg4-mediated delipidation of Atg8. We find that Atg8-PE accumulates on various organelle membranes including the vacuole, the endosome and the ER in these cells, which depletes unlipidated Atg8 and thereby attenuates its localization to the PAS. Our results suggest that the Atg8-PE that accumulates on organelle membranes is erroneously produced by lipidation system components independently of the normal autophagic process. It is also suggested that delipidation of Atg8 by Atg4 on different organelle membranes promotes autophagosome formation. Considered together with other results, we propose that Atg4 acts to compensate for the intrinsic defect in the lipidation system; it recycles Atg8-PE generated on inappropriate membranes to maintain a reservoir of unlipidated Atg8 that is required for autophagosome formation at the PAS.  相似文献   

11.
Two ubiquitin-like molecules, Atg12 and LC3/Atg8, are involved in autophagosome biogenesis. Atg12 is conjugated to Atg5 and forms an ~800-kDa protein complex with Atg16L (referred to as Atg16L complex). LC3/Atg8 is conjugated to phosphatidylethanolamine and is associated with autophagosome formation, perhaps by enabling membrane elongation. Although the Atg16L complex is required for efficient LC3 lipidation, its role is unknown. Here, we show that overexpression of Atg12 or Atg16L inhibits autophagosome formation. Mechanistically, the site of LC3 lipidation is determined by the membrane localization of the Atg16L complex as well as the interaction of Atg12 with Atg3, the E2 enzyme for the LC3 lipidation process. Forced localization of Atg16L to the plasma membrane enabled ectopic LC3 lipidation at that site. We propose that the Atg16L complex is a new type of E3-like enzyme that functions as a scaffold for LC3 lipidation by dynamically localizing to the putative source membranes for autophagosome formation.  相似文献   

12.
《Autophagy》2013,9(2):177-186
Atg8 is a ubiquitin-like protein required for autophagy in the budding yeast Saccharomyces cerevisiae. A ubiquitin-like system mediates the conjugation of the C terminus of Atg8 to the lipid phosphatidylethanolamine (PE), and this conjugate (Atg8–PE) plays a crucial role in autophagosome formation at the phagophore assembly site/pre-autophagosomal structure (PAS). The cysteine protease Atg4 processes the C terminus of newly synthesized Atg8 and also delipidates Atg8 to release the protein from membranes. While the former is a prerequisite for lipidation of Atg8, the significance of the latter in autophagy has remained unclear. Here, we show that autophagosome formation is significantly retarded in cells deficient for Atg4-mediated delipidation of Atg8. We find that Atg8–PE accumulates on various organelle membranes including the vacuole, the endosome and the ER in these cells, which depletes unlipidated Atg8 and thereby attenuates its localization to the PAS. Our results suggest that the Atg8–PE that accumulates on organelle membranes is erroneously produced by lipidation system components independently of the normal autophagic process. It is also suggested that delipidation of Atg8 by Atg4 on different organelle membranes promotes autophagosome formation. Considered together with other results, we propose that Atg4 acts to compensate for the intrinsic defect in the lipidation system; it recycles Atg8–PE generated on inappropriate membranes to maintain a reservoir of unlipidated Atg8 that is required for autophagosome formation at the PAS.  相似文献   

13.
Atg8 controls phagophore expansion during autophagosome formation   总被引:8,自引:3,他引:5  
Autophagy is a potent intracellular degradation process with pivotal roles in health and disease. Atg8, a lipid-conjugated ubiquitin-like protein, is required for the formation of autophagosomes, double-membrane vesicles responsible for the delivery of cytoplasmic material to lysosomes. How and when Atg8 functions in this process, however, is not clear. Here we show that Atg8 controls the expansion of the autophagosome precursor, the phagophore, and give the first real-time, observation-based temporal dissection of the autophagosome formation process. We demonstrate that the amount of Atg8 determines the size of autophagosomes. During autophagosome biogenesis, Atg8 forms an expanding structure and later dissociates from the site of vesicle formation. On the basis of the dynamics of Atg8, we present a multistage model of autophagosome formation. This model provides a foundation for future analyses of the functions and dynamics of known autophagy-related proteins and for screening new genes.  相似文献   

14.
《Autophagy》2013,9(4):461-471
Autophagy is a highly conserved degradation pathway for intracellular macromolecules and organelles. Among those characterized autophagy regulators, the ubiquitin-like protein Atg8 is found to be a membrane modifier that both regulates biogenesis of transport vesicles and interacts with the cargo receptor Atg19 for selective autophagic transport of the vacuolar enzyme prApe1 in budding yeast. The role of Atg8 in the enlargement of vesicle membrane during autophagosome biogenesis has been well documented, but how Atg8 coordinates vesicle formation and sorting of selective cargo is largely unknown. Identification of the cargo-receptor binding site of Atg8 would provide information to solve this issue. Here we characterized Atg8 mutants that were defective in interaction with the prApe1 receptor Atg19 and found that the vesicle formation function of these Atg8 mutants was also compromised to different extents. Atg8 mutants with single-residue substitution at the Atg19-binding site were defective in lipid conjugation and/or subcellular localization. Additional Atg8 mutants were found defective in autophagosome formation without affecting their interaction with Atg19, suggesting partially overlapping of the cargo-sorting site and its domains critical for autophagy control. Our observation paves the road for a more comprehensive understanding on how Atg8 coordinates cargo sorting and vesicle formation in selective autophagic pathways.  相似文献   

15.
Rapid membrane expansion is the key to autophagosome formation during nutrient starvation. In this issue, Yamamoto et al. (2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201202061) now provide a mechanism for vesicle-mediated initiation of autophagosome biogenesis. They show that Atg9 vesicles, produced de novo during starvation, are ~30-60 nm in size and contain ~30 molecules of Atg9. These vesicles assemble to form an autophagosome, and subsequently, the Atg9 embedded in the outer membrane is recycled to avoid degradation.  相似文献   

16.
Geng J  Klionsky DJ 《EMBO reports》2008,9(9):859-864
As a lysosomal/vacuolar degradative pathway that is conserved in eukaryotic organisms, autophagy mediates the turnover of long-lived proteins and excess or aberrant organelles. The main characteristic of autophagy is the formation of a double-membrane vesicle, the autophagosome, which envelops part of the cytoplasm and delivers it to the lysosome/vacuole for breakdown and eventual recycling of the degradation products. Among the approximately 30 autophagy-related (Atg) genes identified so far, there are two ubiquitin-like proteins, Atg12 and Atg8. Analogous to ubiquitination, Atg12 is conjugated to Atg5 by Atg7--an E1-like protein--and Atg10--an E2-like protein. Similarly, Atg7 and Atg3 are the respective E1-like and E2-like proteins that mediate the conjugation of Atg8 to phosphatidylethanolamine. Both Atg12-Atg5 and Atg8 localize to the developing autophagosome. The Atg12-Atg5 conjugate facilitates the lipidation of Atg8 and directs its correct subcellular localization. Atg8-phosphatidylethanolamine is probably a scaffold protein that supports membrane expansion and the amount present correlates with the size of autophagosomes.  相似文献   

17.
Autophagy is a bulk degradation system induced by cellular stresses such as nutrient starvation. Its function relies on the formation of double-membrane vesicles called autophagosomes. Unlike other organelles that appear to stably exist in the cell, autophagosomes are formed on demand, and once their formation is initiated, it proceeds surprisingly rapidly. How and where this dynamic autophagosome formation takes place has been a long-standing question, but the discovery of Atg proteins in the 1990''s significantly accelerated our understanding of autophagosome biogenesis. In this review, we will briefly introduce each Atg functional unit in relation to autophagosome biogenesis, and then discuss the origin of the autophagosomal membrane with an introduction to selected recent studies addressing this problem.  相似文献   

18.
The Atg4 cysteine proteases are required for processing Atg8 for the latter to be conjugated to phosphatidylethanolamine on autophagosomal membranes, a key step in autophagosome biogenesis. Notably, whereas there are only one atg4 and one atg8 gene in the yeast, the mammals have four Atg4 homologues and six Atg8 homologues. The Atg8 homologues seem to play different roles in autophagosome biogenesis, and previous studies had indicated that they could be differentially processed by Atg4 homologues. The present study provided the first detailed kinetics analysis of all four Atg4 homologues against four representative Atg8 homologues. The data indicated that Atg4B possessed the broadest spectrum against all substrates, followed by Atg4A, whereas Atg4C and Atg4D had minimal activities as did the catalytic mutant of Atg4B (C74S). On the other hand, GATE-16 seemed to be the overall best substrate for Atg4 proteases. The kinetics parameters of Atg4B were also affected by its structure and that of the substrates, indicating a process of induced fit. The determination of the kinetics parameters of the various Atg4-Atg8 pairs provides a base for the understanding of the potential selective impact of the reaction on autophagosome biogenesis.  相似文献   

19.
He C  Klionsky DJ 《Autophagy》2007,3(3):271-274
The origin of the autophagosomal membrane and the lipid delivery mechanism during autophagy remain unsolved mysteries. Some important hints to these questions come from Atg9, which is the only integral membrane protein required for autophagosome formation and considered a membrane carrier in autophagy-related pathways. In S. cerevisiae, Atg9 cycles between peripheral sites and the pre-autophagosomal structure/phagophore assembly site (PAS), the nucleating site for formation of the sequestering vesicle. We recently identified a peripheral membrane protein, Atg11, as a binding partner of Atg9, in a yeast two-hybrid screen. Based on our analysis we propose a model for Atg9 cycling. Our model suggests that a pool of Atg11 mediates the anterograde transport of Atg9 to the PAS along the actin cytoskeleton, and that this delivery process may serve as a membrane shuttle for vesicle assembly during yeast selective autophagy. Here, we discuss the implications of the model and present additional evidence that extends it with regard to membrane trafficking modes during pexophagy.  相似文献   

20.
It has been widely assumed that Atg8 family LC3/GABARAP proteins are essential for the formation of autophagosomes during macroautophagy/autophagy, and the sequestration of cargo during selective autophagy. However, there is little direct evidence on the functional contribution of these proteins to autophagosome biogenesis in mammalian cells. To dissect the functions of LC3/GABARAPs during starvation-induced autophagy and PINK1-PARK2/Parkin-dependent mitophagy, we used CRISPR/Cas9 gene editing to generate knockouts of the LC3 and GABARAP subfamilies, and all 6 Atg8 family proteins in HeLa cells. Unexpectedly, the absence of all LC3/GABARAPs did not prevent the formation of sealed autophagosomes, or selective engulfment of mitochondria during PINK1-PARK2-dependent mitophagy. Despite not being essential for autophagosome formation, the loss of LC3/GABARAPs affected both autophagosome size, and the efficiency at which they are formed. However, the critical autophagy defect in cells lacking LC3/GABARAPs was failure to drive autophagosome-lysosome fusion. Relative to the LC3 subfamily, GABARAPs were found to play a prominent role in autophagosome-lysosome fusion and recruitment of the adaptor protein PLEKHM1. Our work clarifies the essential contribution of Atg8 family proteins to autophagy in promoting autolysosome formation, and reveals the GABARAP subfamily as a key driver of starvation-induced autophagy and PINK1-PARK2-dependent mitophagy. Since LC3/GABARAPs are not essential for mitochondrial cargo sequestration, we propose an additional mechanism of selective autophagy. The model highlights the importance of ubiquitin signals and autophagy receptors for PINK-PARK2-mediated selectivity rather than Atg8 family-LIR-mediated interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号