共查询到20条相似文献,搜索用时 0 毫秒
1.
An intervention resembling caloric restriction prolongs life span and retards aging in yeast. 总被引:11,自引:0,他引:11
The yeast Saccharomyces cerevisiae has a finite life span that is measured by the number of daughter cells an individual produces. The 20 genes known to determine yeast life span appear to function in more than one pathway, implicating a variety of physiological processes in yeast longevity. Less attention has been focused on environmental effects on yeast aging. We have examined the role that nutritional status plays in determining yeast life span. Reduction of the glucose concentration in the medium led to an increase in life span and to a delay in appearance of an aging phenotype. The increase in life span was the more extensive the lower the glucose levels. Life extension was also elicited by decreasing the amino acids content of the medium. This suggests that it is the decline in calories and not a particular nutrient that is responsible, in striking similarity to the effect on aging of caloric restriction in mammals. The caloric restriction effect did not require the induction of the retrograde response pathway, which signals the functional status of the mitochondrion and determines longevity. Furthermore, deletion of RTG3, a downstream mediator in this pathway, and caloric restriction had an additive effect, resulting in the largest increase (123%) in longevity described thus far in yeast. Thus, retrograde response and caloric restriction operate along distinct pathways in determining yeast longevity. These pathways may be exclusive, at least in part. This provides evidence for multiple mechanisms of metabolic control in yeast aging. Inasmuch as caloric restriction lowers blood glucose levels, this study raises the possibility that reduced glucose alters aging at the cellular level in mammals. 相似文献
2.
Nikkhil Velingkaar Volha Mezhnina Allan Poe Kuldeep Makwana Richa Tulsian Roman V. Kondratov 《Aging cell》2020,19(4)
Caloric restriction (CR) has positive effects on health and longevity. CR in mammals implements time‐restricted (TR) feeding, a short period of feeding followed by prolonged fasting. Periodic fasting, in the form of TR or mealtime, improves metabolism without reduction in caloric intake. In order to understand the relative contribution of reduced food intake and periodic fasting to the health benefits of CR, we compared physiological and metabolic changes induced by CR and TR (without reduced food intake) in mice. CR significantly reduced blood glucose and insulin around the clock, improved glucose tolerance, and increased insulin sensitivity (IS). TR reduced blood insulin and increased insulin sensitivity, but in contrast to CR, TR did not improve glucose homeostasis. Liver expression of circadian clock genes was affected by both diets while the mRNA expression of glucose metabolism genes was significantly induced by CR, and not by TR, which is in agreement with the minor effect of TR on glucose metabolism. Thus, periodic fasting contributes to some metabolic benefits of CR, but TR is metabolically different from CR. This difference might contribute to differential effects of CR and TR on longevity. 相似文献
3.
Kyung-Mi Choi Hye-Lan Lee Young-Yon Kwon Mi-Sun Kang Sung-Keun Lee Cheol-Koo Lee 《Biochemical and biophysical research communications》2013
Caloric restriction mimetics (CRMs) have been developed to mimic the effects of caloric restriction (CR). However, research reports for the effects of CRMs are often times inconsistent across different research groups. Therefore, in this study, we compared seven identified CRMs which extend the lifespans of various organisms including caffeine, curcumin, dapsone, metformin, rapamycin, resveratrol, and spermidine to CR for mitochondrial function in a single model, Saccharomyces cerevisiae. In this organism, rapamycin extended chronological lifespan (CLS), but other CRMs failed to extend CLS. Rapamycin enhanced mitochondrial function like CR did, but other CRMs did not. Both CR and rapamycin worked on mitochondrial function, but they worked at different windows of time during the chronological aging process. 相似文献
4.
Aidoo A Mittelstaedt RA Bishop ME Lyn-Cook LE Chen YJ Duffy P Heflich RH 《Mutation research》2003,527(1-2):57-66
Caloric restriction (CR) reduces tumor incidence and retards aging in laboratory animals, including non-human primates. Because of the relationships among mutation, disease susceptibility, and aging, we investigated whether or not CR affects the accumulation of somatic cell mutations in aging animals. Starting at approximately 2 months of age, male CD rats (Harlan Sprague-Dawley-derived) were placed on different levels of dietary intake: ad libitum (AL) feeding, and 90% (10% CR), 75% (25% CR) and 60% (40% CR) of the total calories consumed by AL animals. At 3, 6, 12, and 24 months after the beginning of CR, Hprt mutant frequencies (MFs) were determined. The MFs measured in spleen lymphocytes from AL and CR rats sacrificed at 3 months of dietary restriction were similar for all dietary groups. However, the MFs at 6, 12, and 24 months of CR were significantly higher in AL-fed rats compared with animals on 40% CR: (4.5+/-0.4)x10(-6) versus (3.3+/-0.3)x10(-6) (P=0.032) in 6 months CR rats; (10.3+/-2.3)x10(-6) versus (7.3+/-1.2)x10(-6) in 12 months CR rats (P=0.04), and (18.3+/-3.2)x10(-6) versus (7.8+/-1.0)x10(-6) (P=0.001) in 24 months CR rats. In addition, rats receiving 25% CR for 24 months had a MF, (10.7+/-2.0)x10(-6), between the 40% CR and AL rats. Multiplex PCR of the Hprt gene in mutant clones from 12 and 24 months 40% CR rats and the corresponding AL rats detected deletions in 42% of CR mutants and 19% of AL mutants. Because of the difference in Hprt MF in the two groups, the estimated MF associated with deletions in CR rats was similar to the deletion MF in AL rats. This observation implies that the lower MF in CR rats is due to a reduction in smaller Hprt mutations (i.e. base substitutions and frameshifts). The pattern of smaller Hprt mutations from AL rats suggests that many were produced by reactive oxygen species (ROS). The results indicate that CR reduces the accumulation of spontaneous somatic cell mutation in aging rats, especially those caused by base substitutions and frameshifts. 相似文献
5.
6.
Wang Y Lawler D Larson B Ramadan Z Kochhar S Holmes E Nicholson JK 《Journal of proteome research》2007,6(5):1846-1854
Long-term restriction of energy intake without malnutrition is a robust intervention that has been shown to prolong life and delay age-related morbidity. A 1H NMR-based metabonomic strategy was used to monitor urinary metabolic profiles throughout the lifetimes of control-fed and diet-restricted dogs. Urinary metabolic trajectories were constructed for each dog, and metabolic variation was found to be predominantly influenced by age. Urinary excretion of creatinine increased with age, reaching a maximum between ages 5 and 9 years and declining thereafter. Excretion of mixed glycoproteins was noted at earlier ages, which may be a reflection of growth patterns. In addition, consistent metabolic variation related to diet was also characterized, and energy-associated metabolites, such as creatine, 1-methylnicotinamide, lactate, acetate, and succinate, were depleted in urine from diet-restricted dogs. Both aging and diet restriction altered activities of the gut microbiotia, manifested by variation of aromatic metabolites and aliphatic amine compounds. This analysis allowed the metabolic response to two different physiological processes to be monitored throughout the lifetime of the canine population and may form part of a strategy to monitor and reduce the impact of age related diseases in the dog, as well as providing more general insights into extension of longevity in higher mammals. 相似文献
7.
The influence of caloric restriction (CR) on the activities of hepatic serine metabolizing enzymes in young (3 months) and old (30 months) mice was studied. Serine dehydratase (SDH) activity increased markedly with age in both diet groups and in old mice was higher in the CR group. No effects of CR were observed in the young. Serine:pyruvate transaminase (SPT) and glycerate kinase activities were unaffected by age and diet. However, glycerate dehydrogenase activity was decreased in old CR mice but not in young CR. The results of this study show that long-term CR influenced serine utilization only in the pathway catalyzed by SDH. This suggests that in mouse liver this pathway is critical for serine utilization in gluconeogenesis, while the SPT pathway plays a minor role. The increase in SDH activity with long-term CR is consistent with sustained increase in gluconeogenesis. 相似文献
8.
9.
Caloric restriction (CR) is the only preventive intervention that has robust pro-longevity effects in experimental models. Various circulating hormones that regulate the state of negative energy balance may drive the multi-system beneficial effects of the CR phenomenon. Ghrelin, one such stomach-derived circulating peptide hormone stimulates food intake, promotes GH release and inhibits pro-inflammatory cytokines. We have recently demonstrated that ghrelin also reverses age-related thymic involution. Here, we report that chronic CR in aging mice results in reduction in body weight, and spleen size but remarkably, leads to a significant increase in the size and weight of stomach. The increased size of stomach was largely due to increased size of fundus (forestomach) and also smaller but statistically significant enlargement of antrum. The analysis of serial stomach sections revealed that chronic CR leads to a striking hypertrophy of lamina propria, stratum basale, stratum corneum and the stratified squamous epithelium of forestomach of the aged animals. We also report for the first time that chronic CR during aging significantly increases circulating ghrelin levels as well as total ghrelin production in the stomach and reverses age-related loss of ghrelin receptor expression in pituitary. Our data suggests that long-term CR-induced increased ghrelin production from hypertrophic stomach in mice may be an adaptive survival strategy in response to sustained negative energy balance that triggers heightened state of food seeking. Taken together, these data provide new insights into the underlying mechanism behind the salutary effects of chronic caloric restriction during aging process. 相似文献
10.
Accumulation of dysfunctional and damaged cellular proteins and organelles occurs during aging, resulting in a disruption of cellular homeostasis and progressive degeneration and increases the risk of cell death. Moderating the accrual of these defunct components is likely a key in the promotion of longevity. While exercise is known to promote healthy aging and mitigate age‐related pathologies, the molecular underpinnings of this phenomenon remain largely unclear. However, recent evidences suggest that exercise modulates the proteome. Similarly, caloric restriction (CR), a known promoter of lifespan, is understood to augment intracellular protein quality. Autophagy is an evolutionary conserved recycling pathway responsible for the degradation, then turnover of cellular proteins and organelles. This housekeeping system has been reliably linked to the aging process. Moreover, autophagic activity declines during aging. The target of rapamycin complex 1 (TORC1), a central kinase involved in protein translation, is a negative regulator of autophagy, and inhibition of TORC1 enhances lifespan. Inhibition of TORC1 may reduce the production of cellular proteins which may otherwise contribute to the deleterious accumulation observed in aging. TORC1 may also exert its effects in an autophagy‐dependent manner. Exercise and CR result in a concomitant downregulation of TORC1 activity and upregulation of autophagy in a number of tissues. Moreover, exercise‐induced TORC1 and autophagy signaling share common pathways with that of CR. Therefore, the longevity effects of exercise and CR may stem from the maintenance of the proteome by balancing the synthesis and recycling of intracellular proteins and thus may represent practical means to promote longevity. 相似文献
11.
Effects of dietary caloric restriction and aging on thyroid hormones of rhesus monkeys. 总被引:3,自引:0,他引:3
G S Roth A M Handy J A Mattison E M Tilmont D K Ingram M A Lane 《Hormones et métabolisme》2002,34(7):378-382
Plasma levels of thyroid hormones - triiodothyronine (T 3 ), thyroxin (T 4 ), and thyroid-stimulating hormone (TSH) were measured in male and female rhesus monkeys (Macaca mulatta) fed either ad libitum or a 30 % calorie-restricted (CR) diet (males for 11 years; females for 6 years). The same hormones were measured in another group of young male rhesus monkeys during adaptation to the 30 % CR regimen. Both long- and shorter-term CR diet lowered total T 3 in plasma of the monkeys. The effect appeared to be greater in younger monkeys than in older counterparts. No effects of CR diet were detected for either free or total T 4, although unlike T 3, levels of this hormone decreased with age. TSH levels also decreased with age, and were increased by long-term CR diet in older monkeys only. No consistent effects of shorter-term CR diet were observed for TSH. In the light of the effects of the thyroid axis on overall metabolism, these results suggest a possible mechanism by which CR diets may elicit their well-known beneficial 'anti-aging' effects in mammals. 相似文献
12.
The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA. 相似文献
13.
Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection 总被引:5,自引:0,他引:5
Caloric restriction (CR) decreases aging rate and mitochondrial ROS (MitROS) production and oxidative stress in rat postmitotic tissues. Low levels of these parameters are also typical traits of long-lived mammals and birds. However, it is not known what dietary components are responsible for these changes during CR. It was recently observed that 40% protein restriction without strong CR also decreases MitROS generation and oxidative stress. This is interesting because protein restriction also increases maximum longevity (although to a lower extent than CR) and is a much more practicable intervention for humans than CR. Moreover, it was recently found that 80% methionine restriction substituting it for l-glutamate in the diet also decreases MitROS generation in rat liver. Thus, methionine restriction seems to be responsible for the decrease in ROS production observed in caloric restriction. This is interesting because it is known that exactly that procedure of methionine restriction also increases maximum longevity. Moreover, recent data show that methionine levels in tissue proteins negatively correlate with maximum longevity in mammals and birds. All these suggest that lowering of methionine levels is involved in the control of mitochondrial oxidative stress and vertebrate longevity by at least two different mechanisms: decreasing the sensitivity of proteins to oxidative damage, and lowering of the rate of ROS generation at mitochondria. 相似文献
14.
We have explored the role of mitochondrial function in aging by genetically and pharmacologically modifying yeast cellular respiration production during the exponential and/or stationary growth phases and determining how this affects chronological life span (CLS). Our results demonstrate that respiration is essential during both growth phases for standard CLS, but that yeast have a large respiratory capacity, and only deficiencies below a threshold (~40% of wild-type) significantly curtail CLS. Extension of CLS by caloric restriction also required respiration above a similar threshold during exponential growth and completely alleviated the need for respiration in the stationary phase. Finally, we show that supplementation of media with 1% trehalose, a storage carbohydrate, restores wild-type CLS to respiratory-null cells. We conclude that mitochondrial respiratory thresholds regulate yeast CLS and its extension by caloric restriction by increasing stress resistance, an important component of which is the optimal accumulation and mobilization of nutrient stores. 相似文献
15.
Drew B Phaneuf S Dirks A Selman C Gredilla R Lezza A Barja G Leeuwenburgh C 《American journal of physiology. Regulatory, integrative and comparative physiology》2003,284(2):R474-R480
Mitochondria are chronically exposed to reactive oxygen intermediates. As a result, various tissues, including skeletal muscle and heart, are characterized by an age-associated increase in reactive oxidant-induced mitochondrial DNA (mtDNA) damage. It has been postulated that these alterations may result in a decline in the content and rate of production of ATP, which may affect tissue function, contribute to the aging process, and lead to several disease states. We show that with age, ATP content and production decreased by approximately 50% in isolated rat mitochondria from the gastrocnemius muscle; however, no decline was observed in heart mitochondria. The decline observed in skeletal muscle may be a factor in the process of sarcopenia, which increases in incidence with advancing age. Lifelong caloric restriction, which prolongs maximum life span in animals, did not attenuate the age-related decline in ATP content or rate of production in skeletal muscle and had no effect on the heart. 8-Oxo-7,8-dihydro-2'-deoxyguanosine in skeletal muscle mtDNA was unaffected by aging but decreased 30% with caloric restriction, suggesting that the mechanisms that decrease oxidative stress in these tissues with caloric restriction are independent from ATP availability. The generation of reactive oxygen species, as indicated by H2O2 production in isolated mitochondria, did not change significantly with age in skeletal muscle or in the heart. Caloric restriction tended to reduce the levels of H2O2 production in the muscle but not in the heart. These data are the first to show that an age-associated decline in ATP content and rate of ATP production is tissue specific, in that it occurs in skeletal muscle but not heart, and that mitochondrial ATP production was unaltered by caloric restriction in both tissues. 相似文献
16.
Stephen Malunga Manchishi Ran Ji Cui Xiao Han Zou Zi Qian Cheng Bing jin Li 《Journal of cellular and molecular medicine》2018,22(5):2528-2535
Recently, most of evidence shows that caloric restriction could induce antidepressant‐like effects in animal model of depression. Based on studies of the brain–gut axis, some signal pathways were common between the control of caloric restriction and depression. However, the specific mechanism of the antidepressant‐like effects induced by caloric restriction remains unclear. Therefore, in this article, we summarized clinical and experimental studies of caloric restriction on depression. This review may provide a new therapeutic strategy for depression. 相似文献
17.
W.R. Pendergrass M.A. Lane N.L. Bodkin B.C. Hansen D.K. Ingram G.S. Roth L. Yi H. Bin N.S. Wolf 《Journal of cellular physiology》1999,180(1):123-130
Caloric restriction (CR) is the most successful method of extending both median and maximal lifespans in rodents and other short-lived species. It is not yet clear whether this method of life extension will be successful in longer-lived species, possibly including humans; however, trials in rhesus monkeys are underway. We have examined the cellular proliferative potential of cells from CR and AL (ad libitum fed) monkey skin cells using two different bioassays: colony size analysis (CSA) of dermal fibroblasts isolated and cloned directly from the skin and beta-galactosidase staining at pH 6.0 (BG-6.0) of epidermal cells in frozen sections of skin. Decreases in both proliferative markers occurred with age, but no differences were observed between CR and AL animals. Skin biopsies were obtained from AL and CR rhesus monkeys from two different aging colonies, one at the National Institute on Aging (NIA) and one at the University of Maryland-Baltimore (UMB). These biopsies were used as a source of tissue sections and cells for two biomarkers of aging assays. The CR monkeys had been maintained for 9–12 years on approximately 70% of the caloric intake of control AL animals. In the CSA studies, the fraction of small clones increased significantly and the fraction of large clones decreased significantly with increasing age in AL monkeys. The frequency of epidermal BG-6.0 staining cells increased with age in older (>22 years) AL monkeys, but most predominately in those of the UMB colony, which were somewhat heavier than the NIH AL controls. Old monkeys on CR tended to have fewer BG-6.0-positive cells relative to old AL-derived epidermis, but this effect was not significant. These results indicate that cellular proliferative potential declined with age in Macaca mulatta, but was not significantly altered by CR under these conditions. Although these experiments are consistent with an absence of effect of CR on monkey skin cell proliferative potential, we have found in previous experiments with mice that a longer duration of CR (as a fraction of total lifespan) was needed to demonstrate CR-related improvement in clone size in mice. Further studies on the now mid-aged monkeys will be needed as their age exceeds 20 years to conclusively rule out an effect of CR on proliferative potential of skin cells from these primates. J. Cell. Physiol. 180:123–130, 1999. © 1999 Wiley-Liss, Inc. 相似文献
18.
19.
20.
Sébastien Lacroix Mario Lauria Marie-Pier Scott-Boyer Luca Marchetti Corrado Priami Laura Caberlotto 《Genes & nutrition》2015,10(6)
Worldwide population is aging, and a large part of the growing burden associated with age-related conditions can be prevented or delayed by promoting healthy lifestyle and normalizing metabolic risk factors. However, a better understanding of the pleiotropic effects of available nutritional interventions and their influence on the multiple processes affected by aging is needed to select and implement the most promising actions. New methods of analysis are required to tackle the complexity of the interplay between nutritional interventions and aging, and to make sense of a growing amount of -omics data being produced for this purpose. In this paper, we review how various systems biology-inspired methods of analysis can be applied to the study of the molecular basis of nutritional interventions promoting healthy aging, notably caloric restriction and polyphenol supplementation. We specifically focus on the role that different versions of network analysis, molecular signature identification and multi-omics data integration are playing in elucidating the complex mechanisms underlying nutrition, and provide some examples on how to extend the application of these methods using available microarray data.