首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
p63 is a member of the p53 protein family that regulates differentiation and morphogenesis in epithelial tissues and is required for the formation of squamous epithelia. Barrett's mucosa is a glandular metaplasia of the squamous epithelium that develops in the lower esophagus in the context of chronic, gastroesophageal reflux and is considered as a precursor for adenocarcinoma. Normal or squamous cancer esophageal cells were exposed to deoxycholic acid (DCA, 50, 100, or 200 microM) and chenodeoxycholic and taurochenodeoxycholic acid at pH 5. p63 and cyclooxygenase-2 (COX-2) expressions were studied by Western blot and RT-PCR. DCA exposure at pH 5 led to a spectacular decrease in the levels of all isoforms of the p63 proteins. This decrease was observed within minutes of exposure, with a synergistic effect between DCA and acid. Within the same time frame, levels of p63 mRNA were relatively unaffected, whereas levels of COX-2, a marker of stress responses often induced in Barrett's mucosa, were increased. Similar results were obtained with chenodeoxycholic acid but not its taurine conjugate at pH 5. Proteasome inhibition by lactacystin or MG-132 partially blocked the decrease in p63, suggesting a posttranslational degradation mechanism. These results show that combined exposure to bile salt and acid downregulates a critical regulator of squamous differentiation, providing a mechanism to explain the replacement of squamous epithelium by a glandular metaplasia upon exposure of the lower esophagus to gastric reflux.  相似文献   

2.
The trachea and esophagus originate from the foregut endoderm during early embryonic development. Their epithelia undergo a series of changes involving the differentiation of stem cells into unique cell types and ultimately forming the mature epithelia. In this study, we monitored the expression of p63 in the esophagus and the trachea during development and examined in detail morphogenesis in p63–/– mice. At embryonic day 15.5 (E15.5), the esophageal and tracheobronchial epithelia contain two to three layers of cells; however, only the progenitor cells express p63. These progenitor cells differentiate first into ciliated cells (p63/-tubulin IV+) and after birth into mature basal cells (p63+/K14+/K5+/BS-I-B4+). In the adult pseudostratified, columnar tracheal epithelium, K14+/K5+/BS-I-B4+ basal cells stain most intensely for p63, whereas ciliated and mucosecretory cells are negative. In stratified squamous esophageal epithelium and during squamous metaplasia in the trachea, cells in the basal layer stain strongest for p63, whereas p63 staining declines progressively in transient amplifying and squamous differentiated cells. Generally, p63 expression is restricted to human squamous cell carcinomas, and adenocarcinomas and Barrett's metaplasia do not stain for p63. Examination of morphogenesis in newborn p63–/– mice showed an abnormal persistence of ciliated cells in the esophagus. Significantly, in both tissues, lack of p63 expression results in the development of a highly ordered, columnar ciliated epithelium deficient in basal cells. These observations indicate that p63 plays a critical role in the development of normal esophageal and tracheobronchial epithelia and appears to control the commitment of early stem cells into basal cell progeny and the maintenance of basal cells. retinoic acid; stem cell; carcinoma; basal cell; differentiation  相似文献   

3.
Barrett's esophagus, a squamous-to-columnar cell metaplasia that develops as a result of chronic gastroesophageal reflux disease (GERD), is a risk factor for esophageal adenocarcinoma. The molecular events underlying the pathogenesis of Barrett's metaplasia are poorly understood, but recent studies suggest that interactions among developmental signaling pathways, morphogenetic factors, and Caudal homeobox (Cdx) genes play key roles. Strong expression of Cdx genes normally is found in the intestine but not in the esophagus and stomach. When mice are genetically engineered so that their gastric cells express Cdx, the stomach develops a metaplastic, intestinal-type epithelium similar to that of Barrett's esophagus. Exposure to acid and bile has been shown to activate the Cdx promoter in certain esophageal cell lines, and Cdx expression has been found in inflamed esophageal squamous epithelium and in the specialized intestinal metaplasia of Barrett's esophagus. Barrett's metaplasia must be sustained by stem cells, which might be identified by putative, intestinal stem cell markers like leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and doublecortin and CaM kinase-like-1 (DCAMKL-1). Emerging concepts in tumor biology suggest that Barrett's cancers may develop from growth-promoting mutations in metaplastic stem cells or their progenitor cell progeny. This report reviews the roles of developmental signaling pathways and the Cdx genes in the development of normal gut epithelia and the potential mechanisms whereby GERD may induce the esophageal expression of Cdx genes and other morphogenetic factors that mediate the development of Barrett's metaplasia. The role of stem cells in the development of metaplasia and in carcinogenesis and the potential for therapies directed at those stem cells also is addressed.  相似文献   

4.
Women exposed to diethylstilbestrol (DES) in utero develop abnormalities, including cervicovaginal adenosis that can lead to cancer. We report that transient disruption of developmental signals by DES permanently changes expression of p63, thereby altering the developmental fate of Müllerian duct epithelium. The cell fate of Müllerian epithelium to be columnar (uterine) or squamous (cervicovaginal) is determined by mesenchymal induction during the perinatal period. Cervicovaginal mesenchyme induced p63 in Müllerian duct epithelium and subsequent squamous differentiation. In p63(-/-) mice, cervicovaginal epithelium differentiated into uterine epithelium. Thus, p63 is an identity switch for Müllerian duct epithelium to be cervicovaginal versus uterine. P63 was also essential for uterine squamous metaplasia induced by DES-exposure. DES-exposure from postnatal day 1 to 5 inhibited induction of p63 in cervicovaginal epithelium via epithelial ERalpha. The inhibitory effect of DES was transient, and most cervicovaginal epithelial cells recovered expression of p63 by 2 days after discontinuation of DES-treatment. However, some cervicovaginal epithelial cells failed to express p63, remained columnar and persisted into adulthood as adenosis.  相似文献   

5.
Barrett's esophagus (BE) is a metaplastic disorder in which specialized columnar epithelium replaces healthy squamous epithelium (intestinal metaplasia). Even though its pathophysiology and the steps of its neoplastic progression are not completely understood, BE can be considered as a complication of gastroesophageal reflux disease (GERD). Given that esophageal adenocarcinoma, which is continually increasing in the Western world, still has a poor prognosis and suffers from late diagnosis, and because BE is a precancerous lesion, there is a strong need for good molecular markers of malignant progression in Barrett's metaplasia (BM). The aim of this review is to examine the published data regarding the role that assessment of p53 may play in the management of BE, trying to understand if it may be a useful marker to early diagnose BE malignant transformation.  相似文献   

6.
Barrett's oesophagus (BE) is a pre-malignant metaplastic tissue predisposing to oesophageal adenocarcinoma (EC), and gastro-oesophageal reflux is a risk factor for both conditions. Reflux of acid and bile can cause mucosal injury and initiate chronic inflammation. These processes can induce DNA damage, possibly via an oxidative stress mechanism, thus increasing the likelihood of progression from Barrett's metaplasia to dysplasia and finally carcinoma. The comet assay was optimized for the detection of DNA damage (strand breaks and alkali-labile sites) in oesophageal biopsies, including incorporation of the DNA repair enzyme Fapy-DNA glycosylase (Fpg). Fpg allows the detection of 8-hydroxy-2-deoxyguanosine (8-OHdG) sites, a known pro-mutagenic DNA lesion. BE patients were recruited from BE surveillance clinics and oesophageal biopsies collected at endoscopy. Comet analysis revealed significantly increased (p < 0.001) DNA damage in Barrett's epithelium compared with matched squamous epithelium, with median % tail DNA values of 25.1% (first to third quartile 21.7-29.6%) and 18.6% (first to third quartile 16.9-21.4%), respectively. The median % tail DNA was up to 70% higher in the matched BE tissue compared with squamous epithelium from the same patient. Fpg sensitive sites were demonstrated in both tissue types at similar levels. The raised level of DNA damage in the premalignant BE may contribute to the accumulation of genetic alterations occurring during progression to EC. Understanding these underlying mechanisms provides a basis for cancer prevention strategies in BE patients.  相似文献   

7.
Barrett's esophagus is the transformation of normal esophageal squamous epithelium to specialized intestinal metaplasia (SIM). Among the Barrett's specialized cells, those that can develop protective mechanisms against apoptosis may have potential to become malignant. Studies have shown that overexpression of metallothionein (MT), low molecular protein that protects cells from apoptotic stimuli, appears to be associated with more advanced, highly malignant tumors. We thus investigated the relationship between MT expression and apoptosis in different stages of Barrett's carcinogenesis. Terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling and immunohistochemical dual-staining assay were performed in human biopsy samples of normal, SIM, dysplasia, and adenocarcinoma. Apoptotic index and MT expression were quantified by using an image system to analyze the converted digital data. A negative correlation between MT expression and apoptotic index was found. MT expression was significantly increased along with the histologic progression towards adenocarcinoma. This study thus suggests that MT may contribute to cytoprotection, thereby inhibiting apoptosis and leading to carcinogenesis of Barrett's esophageal cells.  相似文献   

8.
9.
Squamous metaplasia is a common pathological process that occurs in the ocular surface epithelium. At present, there is no effective treatment for this abnormality. In the current study, we established an ex vivo conjunctival squamous metaplasia model by culturing human conjunctival tissues at an air-liquid interface for durations of up to 12 days. We then investigated the effects of amniotic membrane (AM) on squamous metaplasia through coculture of conjunctival tissues with AM or AM extract. We found that metaplasia features such as hyperproliferation and abnormal epidermal differentiation of conjunctival epithelium could be inhibited by AM or its extract. In addition, existing squamous metaplasia of conjunctival epithelium could be reversed to a nearly normal phenotype by AM. The mechanism by which AM prevents squamous metaplasia may involve downregulation of p38 mitogen-activated protein kinase and Wnt signaling pathways, which were activated in conjunctival explants cultured with an airlift technique. In conclusion, AM can inhibit and reverse squamous metaplasia of conjunctival epithelium. This finding may shed new light on prevention and treatment of diseases that involve epithelial squamous metaplasia.  相似文献   

10.
11.
We hypothesized that, in esophageal squamous epithelial cells, there are differences among individuals in the signal transduction pathways activated by acid reflux that might underlie the development of Barrett's esophagus. To explore that hypothesis, we immortalized nonneoplastic, esophageal squamous cells from patients with gastroesophageal reflux disease (GERD) with (NES-B3T) and without (NES-G2T) Barrett's esophagus and used those cells to study acid effects on MAPK proteins. During endoscopy in patients with GERD with and without Barrett's esophagus, we took biopsy specimens from the distal squamous esophagus to study MAPK proteins before and after esophageal perfusion with 0.1 N HCl. We used immunoblotting and Western blotting to study MEK1/2 phosphorylation at two activating sites (serines 217/221), MEK1 phosphorylation at an inhibitory site (threonine 286), and MEK1/2 activity. After acid exposure, both cell lines exhibited increased MEK1/2 phosphorylation at the activating sites; the NES-B3T cells had higher levels of MEK1 phosphorylation at the inhibitory site, however, and only the NES-G2T cells showed an acid-induced increase in MEK1/2 activity. Similarly, in the squamous epithelium of patients with GERD with and without Barrett's esophagus, acid perfusion increased MEK1/2 phosphorylation at the activating sites in both patient groups; the Barrett's patients had higher levels of MEK1 phosphorylation at the inhibitory site, however, and only the patients without Barrett's demonstrated an acid-induced increase in ERK1/2 phosphorylation. In esophageal squamous cell lines and biopsies from patients with GERD with and without Barrett's esophagus, we have found differences in MAPK pathways activated by acid exposure. We speculate that these differences might underlie the development of Barrett's metaplasia.  相似文献   

12.
The present study tests the hypothesis that agents known to elevate the level of intracellular cyclic adenine nucleotide may direct different epithelial cells onto a pathway of epidermoid (squamous) development and differentiation. We report here that the mixture of dibutyryl cyclic AMP (dbcAMP), prostaglandins E1, E2 and B1 (PG E1, E2, B1), and papaverine (pap) enhances the rate of normal squamous cell development in organ-cultured skin of chick embryos. The three components may act synergistically to elevate the level of intracellular cyclic adenine nucleotide. We recently reported that the same group of agents induces abnormal development (squamous metaplasia) and aberrant differentiation (keratin production) in the normally cuboidal epithelium of cultured whole mammary glands of mice [1]. Thus, dbcAMP, PG E1, E2, B1, and pap are effective in enhancing normal squamous cell development and also in inducing squamous metaplasia de novo in the epithelial components of two different organs of embryonic and adult animals of two classes of vertebrates. The combined findings are suggestive that cyclic adenine nucleotide together with the prostaglandins may act generally on diverse types of epithelia to bring about squamous cell development and a differentiation marked by keratin production.  相似文献   

13.
The esophageal epithelium is subject to damage from bile acid reflux that promotes normal tissue injury resulting in the development of Barrett's epithelium. There is a selection pressure for mutating p53 in this preneoplastic epithelium, thus identifying a physiologically relevant model for discovering novel regulators of the p53 pathway. Proteomic technologies were used to identify such p53 regulatory factors by identifying proteins that were overexpressed in Barrett's epithelium. A very abundant polypeptide selectively expressed in Barrett's epithelium was identified as anterior gradient-2. Immunochemical methods confirmed that anterior gradient-2 is universally up-regulated in Barrett's epithelium, relative to normal squamous tissue derived from the same patient. Transfection of the anterior gradient-2 gene into cells enhances colony formation, similar to mutant oncogenic p53 encoded by the HIS175 allele, suggesting that anterior gradient-2 can function as a survival factor. Deletion of the C-terminal 10 amino acids of anterior gradient-2 neutralizes the colony enhancing activity of the gene, suggesting a key role for this domain in enhancing cell survival. Constitutive overexpression of anterior gradient-2 does not alter cell-cycle parameters in unstressed cells, suggesting that this gene is not directly modifying the cell cycle. However, cells overexpressing anterior gradient-2 attenuate p53 phosphorylation at both Ser(15) and Ser(392) and silence p53 transactivation function in ultraviolet (UV)-damaged cells. Deletion of the C-terminal 10 amino acids of anterior gradient-2 permits phosphorylation at Ser(15) in UV-damaged cells, suggesting that the C-terminal motif promoting colony survival also contributes to suppression of the Ser(15) kinase pathway. These data identify anterior gradient-2 as a novel survival factor whose study may shed light on cellular pathways that attenuate the tumor suppressor p53.  相似文献   

14.
Transition from G1 to S phase of the cell cycle is mediated by interactions between the Retinoblastoma gene product (pRb), p16, and cyclin D1. To determine the expression of these proteins in the sinonasal mucosa immunohistochemistry was carried out on archived tissue sections from 46 patients (37 men, 9 women, age range 17 to 82 years, median 55 years). Nuclear immunostaining for these proteins was assessed and the expression rates (percentages of immunoreactive nuclei) in normal respiratory epithelium, inverted sinonasal papillomas, cylindrical (oncocytic) sinonasal papillomas, and squamous cell carcinomas were compared. Normal respiratory epithelium showed significantly higher pRb expression in surface cells compared to basal cells (p < 0.05). In contrast, abundant pRb expression in surface and basal cells was detected in columnar differentiation in sinonasal papillomas and adjacent mucosa. Cuboidal and squamous metaplasia in inverted papillomas showed significantly reduced pRb expression in surface cells compared to columnar epithelium in inverted papillomas (p < 0.05, respectively). Expression of p16 was detected in all epithelial cell layers of normal respiratory epithelium, sinonasal papillomas, and adjacent mucosa. Cuboidal and squamous metaplasia in inverted papillomas showed increased p16 expression in surface cells compared to columnar epithelium in inverted papillomas (p < 0.05 between squamous metaplasia and columnar epithelium). Sinonasal squamous cell carcinomas showed the coexpression of pRb and p16. Expression rates of cyclin D1 higher than 10% were detected only in invasive carcinomas but not in carcinoma in situ, sinonasal papillomas or respiratory epithelium. Conclusively, pRb expression accompanies terminal differentiation in columnar surface cells. Expression of pRb in proliferating basal cells is present in sinonasal papillomas and adjacent mucosa but not in normal respiratory epithelium. Cuboidal and squamous metaplasia in inverted papillomas involves downregulation of pRb expression along with increased p16 expression in surface cells. Sinonasal squamous cell carcinomas coexpress pRb and p16. Overexpression of cyclin D1 in sinonasal lesions is confined to invasive squamous cell carcinomas.  相似文献   

15.
16.
Kumar PA  Hu Y  Yamamoto Y  Hoe NB  Wei TS  Mu D  Sun Y  Joo LS  Dagher R  Zielonka EM  Wang de Y  Lim B  Chow VT  Crum CP  Xian W  McKeon F 《Cell》2011,147(3):525-538
The extent of lung regeneration following catastrophic damage and the potential role of adult stem cells in such a process remains obscure. Sublethal infection of mice with an H1N1 influenza virus related to that of the 1918 pandemic triggers massive airway damage followed by apparent regeneration. We show here that p63-expressing stem cells in the bronchiolar epithelium undergo rapid proliferation after infection and radiate to interbronchiolar regions of alveolar ablation. Once there, these cells assemble into discrete, Krt5+ pods and initiate expression of markers typical of alveoli. Gene expression profiles of these pods suggest that they are intermediates in the reconstitution of the alveolar-capillary network eradicated by viral infection. The dynamics of this p63-expressing stem cell in lung regeneration mirrors our parallel finding that defined pedigrees of human distal airway stem cells assemble alveoli-like structures in vitro and suggests new therapeutic avenues to acute and chronic airway disease.  相似文献   

17.
The present study tests the hypothesis that agents known to elevate the level of intracellular cyclic adenine nucleotide may direct different epithelial cells onto a pathway of epidermoid (squamous) development and differentiation. We report here that the mixture of dibutyryl cyclic AMP (dbcAMP), prostaglandins E1, E2 and B1, (PG E1, E2, B1), and papaverine (pap) enhances the rate of normal squamous cell development in organ-cultured skin of chick embryos. The three components may act synergistically to elevate the level of intracellular cyclic adenine nucleotide. We recently reported that the same group of agents induces abnormal development (squamous metaplasia) and aberrant differentiation (keratin production) in the normally cuboidal epithelium of cultured whole mammary glands of mice [1]. Thus, dbcAMP, PG E1, E2, B1, and pap are effective in enhancing normal squamous cell development and also in inducing squamous metaplasia de novo in the epithelial components of two different organs of embryonic and adult animals of two classes of vertebrates. The combined findings are suggestive that cyclic adenine nucleotide together with the prostaglandins may act generally on diverse types of epithelia to bring about squamous cell development and a differentiation marked by keratin production.  相似文献   

18.
Differential expression of p63 isoforms in female reproductive organs   总被引:4,自引:0,他引:4  
p63 is the identity switch for uterine/vaginal epithelial cell fate, and disruption of p63 expression by diethylstilbestrol (DES) induces cervical/vaginal adenosis in mice. In this article, we report the expression patterns of p63 isoforms (TA, DeltaN, alpha, beta and gamma) in mice, focusing on the reproductive tract. We also present the reproductive tract phenotype of female p63-/- mice. Finally, to better evaluate the potential role of p63 in human development of DES-induced cervical/vaginal adenosis, we describe the ontogeny of p63 in human female fetuses. In adult mice, the DeltaN isoforms of p63 were expressed only in squamous/basal/myoepithelial cells of epithelial tissues, while TA isoforms of p63 were highly expressed in germ cells of the ovary and testis. In fetal mice, the DeltaN and alpha forms of p63 were expressed in the cloacal and urogenital sinus epithelia. In the female p63-/- mice, the sinus vagina developed, but p63-/- sinus vaginal epithelium failed to undergo squamous differentiation confirming an essential role of p63 in squamous epithelial differentiation. Although TAp63 was highly expressed in developing primordial germ cells/oocytes, p63-/- ovaries and oocytes developed normally. The ontogeny of p63 in female reproductive organs was essentially identical in mouse and human. In the human fetus at the susceptible stage for DES-induced cervical/vaginal adenosis, most cervical/vaginal epithelial cells were columnar and negative for p63. Therefore, inhibition of p63 expression by DES should change the cell fate of human Müllerian duct epithelial cells and cause cervical/vaginal adenosis as previously demonstrated in mouse.  相似文献   

19.
It is generally accepted that esophageal adenocarcinoma arises from a Barrett's metaplastic lesion. Altered glycoprotein expression has been demonstrated in tissue from patients with Barrett's esophagus and esophageal cancer but the mechanisms regarding such changes are unknown. The bile acid deoxycholic acid (DCA) alters many cell signaling pathways and is implicated in esophageal cancer progression. We have demonstrated that DCA disrupts Golgi structure and affects protein secretion and glycosylation processes in cell lines derived from normal squamous epithelium (HET-1A) and Barrett's metaplastic epithelium (QH). Cell surface expression of glycans was identified using carbohydrate-specific probes (wheat germ agglutinate, conconavalin A, peanut agglutinin, lithocholic acid and Ulex europaeus agglutinin) that monitored N-glycosylation, O-glycosylation and core fucosylation in resting and DCA-treated cells. DCA altered intracellular localization and reduced cell surface expression of N-acetyl-D-glucosamine, α-methyl-mannopyranoside (Man/Glc) and fucose in both cell lines. Furthermore, DCA reduced the expression of epithelial growth factor receptor and E-cadherin in a manner analogous to treatment of cells with the N-glycan biosynthesis inhibitor tunicamycin. This is the first study to identify an altered Golgi structure and glycomic profile in response to DCA in esophageal epithelial cells, a process which could potentially contribute to metaplasia, dysplasia and cancer of the esophagus.  相似文献   

20.
Telomeres are repetitive DNA sequences located at the ends of chromosomes. Telomeres are shortened by repeated cell divisions and by oxidative DNA damage, and cells with critically shortened telomeres cannot divide. We hypothesized that chronic gastroesophageal reflux disease (GERD)-induced injury of the esophageal squamous epithelium results in progressive telomeric shortening that eventually might interfere with mucosal healing. To address our hypothesis, we compared telomere length and telomerase activity in biopsy specimens of esophageal squamous epithelium from GERD patients and control patients. Endoscopic biopsies were taken from the esophageal squamous epithelium of 38 patients with GERD [10 long-segment Barrett's esophagus (LSBE), 15 short-segment (SSBE), 13 GERD without Barrett's esophagus] and 16 control patients without GERD. Telomere length was assessed using the terminal restriction fragment assay, and telomerase activity was studied by the PCR-based telomeric repeat amplification protocol assay. Patients with GERD had significantly shorter telomeres in the distal esophagus than controls [8.3 +/- 0.5 vs. 10.9 +/- 1.5 (SE) Kbp, P = 0.043]. Among the patients with GERD, telomere length in the distal esophagus did not differ significantly in those with and without Barrett's esophagus (LSBE 7.9 +/- 0.8, SSBE 8.6 +/- 0.9, GERD without BE 8.7 +/- 1.0 Kbp). No significant differences in telomerase activity in the distal esophagus were noted between patients with GERD and controls (4.0 +/- 0.39 vs. 5.2 +/- 0.53 RIUs). Telomeres in the squamous epithelium of the distal esophagus of patients who have GERD, with and without Barrett's esophagus, are significantly shorter than those of patients without GERD despite similar levels of telomerase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号