首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Autophagy, mediated by a number of autophagy‐related (ATG) proteins, plays an important role in the bulk degradation of cellular constituents. Beclin‐1 (also known as Atg6 in yeast) is a core protein essential for autophagic initiation and other biological processes. The activity of Beclin‐1 is tightly regulated by multiple post‐translational modifications, including ubiquitination, yet the molecular mechanism underpinning its reversible deubiquitination remains poorly defined. Here, we identified ubiquitin‐specific protease 19 (USP19) as a positive regulator of autophagy, but a negative regulator of type I interferon (IFN) signaling. USP19 stabilizes Beclin‐1 by removing the K11‐linked ubiquitin chains of Beclin‐1 at lysine 437. Moreover, we found that USP19 negatively regulates type I IFN signaling pathway, by blocking RIG‐I‐MAVS interaction in a Beclin‐1‐dependent manner. Depletion of either USP19 or Beclin‐1 inhibits autophagic flux and promotes type I IFN signaling as well as cellular antiviral immunity. Our findings reveal novel dual functions of the USP19‐Beclin‐1 axis by balancing autophagy and the production of type I IFNs.  相似文献   

2.
Class III phosphatidylinositol 3-kinase (PI3-kinase) regulates multiple membrane trafficking. In yeast, two distinct PI3-kinase complexes are known: complex I (Vps34, Vps15, Vps30/Atg6, and Atg14) is involved in autophagy, and complex II (Vps34, Vps15, Vps30/Atg6, and Vps38) functions in the vacuolar protein sorting pathway. Atg14 and Vps38 are important in inducing both complexes to exert distinct functions. In mammals, the counterparts of Vps34, Vps15, and Vps30/Atg6 have been identified as Vps34, p150, and Beclin 1, respectively. However, orthologues of Atg14 and Vps38 remain unknown. We identified putative mammalian homologues of Atg14 and Vps38. The Vps38 candidate is identical to UV irradiation resistance-associated gene (UVRAG), which has been reported as a Beclin 1-interacting protein. Although both human Atg14 and UVRAG interact with Beclin 1 and Vps34, Atg14, and UVRAG are not present in the same complex. Although Atg14 is present on autophagic isolation membranes, UVRAG primarily associates with Rab9-positive endosomes. Silencing of human Atg14 in HeLa cells suppresses autophagosome formation. The coiled-coil region of Atg14 required for binding with Vps34 and Beclin 1 is essential for autophagy. These results suggest that mammalian cells have at least two distinct class III PI3-kinase complexes, which may function in different membrane trafficking pathways.  相似文献   

3.
Atg6/Beclin 1 is an evolutionarily conserved protein family that has been shown to function in vacuolar protein sorting (VPS) in yeast; in autophagy in yeast, Drosophila, Dictyostelium, C.elegans, and mammals; and in tumor suppression in mice. Atg6/Beclin 1 is thought to function as a VPS and autophagy protein as part of a complex with Class III phosphatidylinositol 3'-kinase (PI3K)/Vps34. However, nothing is known about which domains of Atg6/Beclin 1 are required for its functional activity and binding to Vps34. We hypothesized that the most highly conserved region of human Beclin 1 spanning from amino acids 244-337 is essential for Vps34 binding, autophagy, and tumor suppressor function. To investigate this hypothesis, we evaluated the effects of wild-type and mutant beclin 1 gene transfer in autophagy-deficient MCF7 human breast carcinoma cells. We found that, unlike wild-type Beclin 1, a Beclin 1 mutant lacking aa 244-337 (Beclin 1DeltaECD), is unable to enhance starvation-induced autophagy in low Beclin 1-expressing MCF7 human breast carcinoma cells. In contrast to wild-type Beclin 1, mutant Beclin 1DeltaECD is unable to immunoprecipitate Vps34, has no Beclin 1-associated Vps34 kinase activity, and lacks tumor suppressor function in an MCF7 scid mouse xenograft tumor model. The maturation of cathepsin D, which requires intact Vps34-dependent VPS function, is comparable in autophagy-deficient low-Beclin 1 expressing MCF7 cells, autophagy-deficient MCF7 cells transfected with Beclin 1DeltaECD, and autophagy-competent MCF7 cells transfected with wild-type Beclin 1. These findings identify an evolutionarily conserved domain of Beclin 1 that is essential for Vps34 interaction, autophagy function, and tumor suppressor function. Furthermore, they suggest a connection between Beclin 1-associated Class III PI3K/Vps34-dependent autophagy, but not VPS, function and the mechanism of Beclin 1 tumor suppressor action in human breast cancer cells.  相似文献   

4.
《Autophagy》2013,9(6):890-891
Emerging evidence suggests that Beclin 1, the mammalian ortholog of yeast Atg6/Vps30, functions to coordinate two important cellular pathways: autophagy and apoptosis. Beclin 1 is a component of the Vps34/class III phosphatidylinositol 3-kinase (PtdIns3K) protein complex. However, the Beclin 1-Vps34/PtdIns3K protein complex formation and its function in autophagy regulation remain to be elucidated. Through an integrated approach that combines mouse genetics and biochemistry, we identified two novel Beclin 1 interacting proteins, Atg14L and Rubicon. We found that Atg14L and Rubicon play opposing roles in autophagy regulation by forming distinct complexes with Beclin 1, modulating the Vps34/PtdIns3K activity and targeting distinct steps of the autophagic process.  相似文献   

5.
Autophagy is a tightly regulated lysosomal degradation pathway for maintaining cellular homeostasis and responding to stresses. Beclin 1 and its interacting proteins, including the class III phosphatidylinositol-3 kinase Vps34, play crucial roles in autophagy regulation in mammals. We identified nuclear receptor binding factor 2 (Nrbf2) as a Beclin 1-interacting protein from Becn1−/−;Becn1-EGFP/+ mouse liver and brain. We also found that Nrbf2-Beclin 1 interaction required the N terminus of Nrbf2. We next used the human retinal pigment epithelial cell line RPE-1 as a model system and showed that transiently knocking down Nrbf2 by siRNA increased autophagic flux under both nutrient-rich and starvation conditions. To investigate the mechanism by which Nrbf2 regulates autophagy, we demonstrated that Nrbf2 interacted and colocalized with Atg14L, suggesting that Nrbf2 is a component of the Atg14L-containing Beclin 1-Vps34 complex. Moreover, ectopically expressed Nrbf2 formed cytosolic puncta that were positive for isolation membrane markers. These results suggest that Nrbf2 is involved in autophagosome biogenesis. Furthermore, we showed that Nrbf2 deficiency led to increased intracellular phosphatidylinositol-3 phosphate levels and diminished Atg14L-Vps34/Vps15 interactions, suggesting that Nrbf2-mediated Atg14L-Vps34/Vps15 interactions likely inhibit Vps34 activity. Therefore, we propose that Nrbf2 may interact with the Atg14L-containing Beclin 1-Vps34 protein complex to modulate protein-protein interactions within the complex, leading to suppression of Vps34 activity, autophagosome biogenesis, and autophagic flux. This work reveals a novel aspect of the intricate mechanism for the Beclin 1-Vps34 protein-protein interaction network to achieve precise control of autophagy.  相似文献   

6.
Autophagy is an intracellular degradation process to clear up aggregated proteins or aged and damaged organelles. The Beclin1-Vps34-Atg14L complex is essential for autophagosome formation. However, how the complex formation is regulated is unclear. Here, we show that Dapper1 (Dpr1) acts as a critical regulator of the Beclin1-Vps34-Atg14L complex to promote autophagy. Dpr1 ablation in the central nervous system results in motor coordination defect and accumulation of p62 and ubiquitinated proteins. Dpr1 increases autophagosome formation as indicated by elevated puncta formation of LC3, Atg14L and DFCP1 (Double FYVE-containing protein 1). Conversely, loss of Dpr1 impairs LC3 lipidation and causes p62/SQSTM1 accumulation. Dpr1 directly interacts with Beclin1 and Atg14L and enhances the Beclin1-Vps34 interaction and Vps34 activity. Together, our findings suggest that Dpr1 enhances the Atg14L-Beclin1-Vps34 complex formation to drive autophagy.  相似文献   

7.
Autophagy degrades cytoplasmic proteins and organelles to recycle cellular components that are required for cell survival and tissue homeostasis. However, it is not clear how autophagy is regulated in mammalian cells. WASH (Wiskott–Aldrich syndrome protein (WASP) and SCAR homologue) plays an essential role in endosomal sorting through facilitating tubule fission via Arp2/3 activation. Here, we demonstrate a novel function of WASH in modulation of autophagy. We show that WASH deficiency causes early embryonic lethality and extensive autophagy of mouse embryos. WASH inhibits vacuolar protein sorting (Vps)34 kinase activity and autophagy induction. We identified that WASH is a new interactor of Beclin 1. Beclin 1 is ubiquitinated at lysine 437 through lysine 63 linkage in cells undergoing autophagy. Ambra1 is an E3 ligase for lysine 63‐linked ubiquitination of Beclin 1 that is required for starvation‐induced autophagy. The lysine 437 ubiquitination of Beclin 1 enhances the association with Vps34 to promote Vps34 activity. WASH can suppress Beclin 1 ubiquitination to inactivate Vps34 activity leading to suppression of autophagy.  相似文献   

8.
Zhang D  Zaugg K  Mak TW  Elledge SJ 《Cell》2006,126(3):529-542
The Chk2-p53-PUMA pathway is a major regulator of DNA-damage-induced apoptosis in response to double-strand breaks in vivo. Through analysis of 53BP1 complexes we have discovered a new ubiquitin protease, USP28, which regulates this pathway. Using a human cell line that faithfully recapitulated the Chk2-p53-PUMA pathway, we show that USP28 is required to stabilize Chk2 and 53BP1 in response to DNA damage. In this cell line, both USP28 and Chk2 are required for DNA-damage-induced apoptosis, and they accomplish this in part through regulation of the p53 induction of proapoptotic genes like PUMA. Our studies implicate DNA-damage-induced ubiquitination and deubiquitination as a major regulator of the DNA-damage response for Chk2, 53BP1, and a number of other proteins in the DNA-damage checkpoint pathway, including several mediators, such as Mdc1, Claspin, and TopBP1.  相似文献   

9.
Levine B  Sinha S  Kroemer G 《Autophagy》2008,4(5):600-606
The essential autophagy protein and haplo-insufficient tumor suppressor, Beclin 1, interacts with several cofactors (Ambra1, Bif-1, UVRAG) to activate the lipid kinase Vps34, thereby inducing autophagy. In normal conditions, Beclin 1 is bound to and inhibited by Bcl-2 or the Bcl-2 homolog Bcl-X(L). This interaction involves a Bcl-2 homology 3 (BH3) domain in Beclin 1 and the BH3 binding groove of Bcl-2/Bcl-X(L). Other proteins containing BH3 domains, called BH3-only proteins, can competitively disrupt the interaction between Beclin 1 and Bcl-2/Bcl-X(L) to induce autophagy. Nutrient starvation, which is a potent physiologic inducer of autophagy, can stimulate the dissociation of Beclin 1 from its inhibitors, either by activating BH3-only proteins (such as Bad) or by posttranslational modifications of Bcl-2 (such as phosphorylation) that may reduce its affinity for Beclin 1 and BH3-only proteins. Thus, anti-apoptotic Bcl-2 family members and pro-apoptotic BH3-only proteins may participate in the inhibition and induction of autophagy, respectively. This hitherto neglected crosstalk between the core machineries regulating autophagy and apoptosis may redefine the role of Bcl-2 family proteins in oncogenesis and tumor progression.  相似文献   

10.
去泛素化酶USP2a是去泛素化酶家族(DUBs)的一个成员,为半胱氨酸蛋白酶,是一种重要的特异性去泛素化水解酶。USP2a具有结构和功能多样性,其结构多样化使得这些酶具有一些特异性作用靶点,特别是在基因表达调控中靶向的生理底物种类繁多。特异性蛋白泛素化水平的动态变化涉及到基因表达活化和失活的多种机制以及信号通路转导的多个环节。越来越多的文献报道了去泛素化酶相互作用网络的组成及其重要性。USP2a调节多种重要的细胞生长和分化调节因子及信号转导因子的稳定性和功能,通过USP2a的去泛素化作用以及诱导它们之间相互反应对机体进行相应调控,特别是在调控转录因子、细胞周期和细胞凋亡自噬上发挥重要作用。USP2a的过表达在体内外都表现出致癌性,其靶蛋白通过各种途径影响肿瘤发生发展。通过对人类肿瘤发生发展的相关分子机制及信号通路影响的深入研究,USP2a有望成为肿瘤治疗的新靶点。现就去泛素化酶与人类肿瘤发生发展的相关分子机制及该领域的研究进展作一综述。  相似文献   

11.
The mammalian circadian clock coordinates various physiological activities with environmental cues to achieve optimal adaptation. The clock manifests oscillations of key clock proteins, which are under dynamic control at multiple post-translational levels. As a major post-translational regulator, the ubiquitination-dependent proteasome degradation system is counterbalanced by a large group of deubiquitin proteases with distinct substrate preference. Until now, whether deubiquitination by ubiquitin-specific proteases can regulate the clock protein stability and circadian pathways remains largely unclear. The mammalian clock protein, cryptochrome 1 (CRY1), is degraded via the FBXL3-mediated ubiquitination pathway, suggesting that it is also likely to be targeted by the deubiquitination pathway. Here, we identified that USP2a, a circadian-controlled deubiquitinating enzyme, interacts with CRY1 and enhances its protein stability via deubiquitination upon serum shock. Depletion of Usp2a by shRNA greatly enhances the ubiquitination of CRY1 and dampens the oscillation amplitude of the CRY1 protein during a circadian cycle. By stabilizing the CRY1 protein, USP2a represses the Per2 promoter activity as well as the endogenous Per2 gene expression. We also demonstrated that USP2a-dependent deubiquitination and stabilization of the CRY1 protein occur in the mouse liver. Interestingly, the pro-inflammatory cytokine, TNF-α, increases the CRY1 protein level and inhibits circadian gene expression in a USP2a-dependent fashion. Therefore, USP2a potentially mediates circadian disruption by suppressing the CRY1 degradation during inflammation.  相似文献   

12.
Gossypol, a natural Bcl-2 homology domain 3 mimetic compound isolated from cottonseeds, is currently being evaluated in clinical trials. Here, we provide evidence that gossypol induces autophagy followed by apoptotic cell death in both the MCF-7 human breast adenocarcinoma and HeLa cell lines. We first show that knockdown of the Bcl-2 homology domain 3-only protein Beclin 1 reduces gossypol-induced autophagy in MCF-7 cells, but not in HeLa cells. Gossypol inhibits the interaction between Beclin 1 and Bcl-2 (B-cell leukemia/lymphoma 2), antagonizes the inhibition of autophagy by Bcl-2, and hence stimulates autophagy. We then show that knockdown of Vps34 reduces gossypol-induced autophagy in both cell lines, and consistent with this, the phosphatidylinositol 3-phosphate-binding protein WIPI-1 is recruited to autophagosomal membranes. Further, Atg5 knockdown also reduces gossypol-mediated autophagy. We conclude that gossypol induces autophagy in both a canonical and a noncanonical manner. Notably, we found that gossypol-mediated apoptotic cell death was potentiated by treatment with the autophagy inhibitor wortmannin or with small interfering RNA against essential autophagy genes (Vps34, Beclin 1, and Atg5). Our findings support the notion that gossypol-induced autophagy is cytoprotective and not part of the cell death process induced by this compound.  相似文献   

13.
The highly conserved eukaryotic process of macroautophagy (autophagy) is a non-specific bulk-degradation program critical for maintaining proper cellular homeostasis, and for clearing aged and damaged organelles. This decision is inextricably dependent upon prevailing metabolic demands and energy requirements of the cell. Soluble monomeric decorin functions as a natural tumor repressor that antagonizes a variety of receptor tyrosine kinases. Recently, we discovered that decorin induces endothelial cell autophagy, downstream of VEGFR2. This process was wholly dependent upon Peg3, a decorin-inducible genomically imprinted tumor suppressor gene. However, the signaling cascades responsible have remained elusive. In this report we discovered that Vps34, a class III phosphoinositide kinase, is an upstream kinase required for Peg3 induction. Moreover, decorin triggered differential formation of Vps34/Beclin 1 complexes with concomitant dissolution of inhibitive Bcl-2/Beclin 1 complexes. Further, decorin inhibited anti-autophagic signaling via suppression of Akt/mTOR/p70S6K activity with the concurrent activation of pro-autophagic AMPK-mediated signaling cascades. Mechanistically, AMPK is downstream of VEGFR2 and inhibition of AMPK signaling abrogated decorin-evoked autophagy. Collectively, these findings hint at the complexity of the underlying molecular relays necessary for decorin-evoked endothelial cell autophagy and reveal important therapeutic targets for augmenting autophagy and combatting tumor angiogenesis.  相似文献   

14.
Autophagy is a catabolic process in which cell components are degraded to maintain cellular homeostasis by nutrient limitations. Defects of autophagy are involved in numerous diseases, including cancer. Here, we demonstrate a new role of phospholipase D (PLD) as a regulator of autophagy. PLD inhibition enhances autophagic flux via ATG1 (ULK1), ATG5 and ATG7, which are essential autophagy gene products critical for autophagosome formation. Moreover, PLD suppresses autophagy by differentially modulating phosphorylation of ULK1 mediated by mTOR and adenosine monophosphate-activated protein kinase (AMPK), and by suppressing the interaction of Beclin 1 with vacuolar-sorting protein 34 (Vps34), indicating that PLD coordinates major players of the autophagic pathway, AMPK-mTOR-ULK1 and Vps34/Beclin 1. Ultimately, PLD inhibition significantly sensitized in vitro and in vivo cancer regression via genetic and pharmacological inhibition of autophagy, providing rationale for a new therapeutic approach to enhancing the anticancer efficacy of PLD inhibition. Collectively, we show a novel role for PLD in the molecular machinery regulating autophagy.  相似文献   

15.
Vps34 is the ancestral phosphatidylinositol 3-kinase (PtdIns3K) isoform and is essential for endosomal trafficking of proteins to the vacuole/lysosome, autophagy and phagocytosis. Vps34-containing complexes associate with specific cellular compartments to produce PtdIns(3)P. Understanding the roles of Vps34 has been hampered by the lack of potent, specific inhibitors. To boost development of Vps34 inhibitors, we determined the crystal structures of Vps34 alone and in complexes with multitargeted PtdIns3K inhibitors. These structures provided a first glimpse into the uniquely constricted ATP-binding site of Vps34 and enabled us to model Vps34 regulation. We showed that the substrate-binding “activation” loop and the flexibly attached amphipathic C-terminal helix are crucial for catalysis on membranes. The C-terminal helix also suppresses ATP hydrolysis in the absence of membranes. We propose that membrane binding shifts the C-terminal helix to orient the enzyme for catalysis, and the Vps15 regulatory subunit, which binds to this and the preceding helix, may facilitate this process. This C-terminal region may also represent a target for specific, non-ATP-competitive PtdIns3K inhibitors.Key words: Vps34, PI 3-kinase, structure, inhibitor, enzyme, autophagy, Vps15, PtdIns3P, phosphoinositidePtdIns3Ks phosphorylate their lipid substrates at the 3-hydroxyl position of the inositol headgroup. Vps34 is the primordial PtdIns3K present in all eukaryotes and the only PtdIns3K in fungi and plants. This Cinderella of the PtdIns3Ks is responsible for much of a cell''s cleaning and self-feeding: It is essential for multivesicular body formation, autophagy and phagocytosis. It associates with endosomes, omegasomes and phagosomes producing PtdIns(3)P, the most abundant 3-phosphoinositide in resting mammalian cells, which is essential for recruiting a range of complexes to intracellular membranes, including the autophagy machinery, ESCRTs, the retromer, motor proteins and components necessary for abscission in cytokinesis. In cells, Vps34 is at the core of larger complexes that also contain two regulatory proteins, Vps15 and Beclin 1, which bind directly to Vps34. The N-terminally myristoylated putative Ser/Thr protein kinase p150/Vps15 increases the lipid kinase activity of Vps34 and facilitates its translocation to endosomal membranes and the phagophore assembly site (PAS) or phagophore (Fig. 1A).Open in a separate windowFigure 1(A) Domain organization of Vps34, its regulatory subunit Vps15 and the adaptor proteins required for autophagy induction in mammalian cells, Beclin 1 and Atg14L/Barkor (Beclin1-associated autophagy-related key regulator). (B) Structure of Drosophila Vps34 helical (green) and catalytic (red/yellow) domains. A PtdIns substrate molecule has been modeled between the activation loop (magenta) and the catalytic loop (black) and ATP was modeled based on the p110γ/ATP structure (PDB ID 1E8X). The C2 domain (cyan) was also modeled from the p110γ/ATP structure. The enzyme is oriented so that the C2 domain and C-terminal helix interact with the membrane. Two regulatory proteins bind directly to Vps34: Vps15 binds to helices kα11 and kα12 (orange), and Beclin 1 binds to the C2 domain. Both Vps15 and Beclin 1 stimulate Vps34 activity. (C) A schematic representation of the Vps34 domains and the putative change in conformation of the kα12 helix. In solution (right), the helix is closed and interacts with residues in the substrate-binding and catalytic loops to exclude water. At the membrane (left), the kα12 helix undergoes a conformational change and interacts with the membrane, enabling productive substrate binding and catalysis.We have determined the structure of the catalytic core of Vps34 (PDB ID 2X6H) (Fig. 1B), which consists of a helical solenoid domain forming an extensive interface with a bilobal catalytic domain. The catalytic domain reveals key features that are important for the catalytic mechanism of all PtdIns3Ks: A phosphate-binding loop (P-loop) that interacts with the phosphates of ATP, a substrate-binding loop or “activation” loop that recognizes the PtdIns substrate, and a catalytic loop that is required for the transfer of the ATP γ-phosphate to the 3-hydroxyl of PtdIns. For the first time in any PtdIns3K structure, all three of these elements are completely ordered. The C-terminal helix (kα12) was previously shown to be required for Vps34 catalytic activity. However, the molecular basis for its function was unknown. The Vps34 structure suggests that the C-terminal helix closely associates with the substrate-binding loop and catalytic loop in the closed conformation. Site-specific mutagenesis guided by the crystal structure provides key insights into mechanisms of enzymatic regulation of Vps34 by this C-terminal helix. Deletion of the last 10 residues or point mutations within this helix, dramatically impairs lipid kinase activity in the presence of substrate lipids, but increases basal ATPase activity in the absence of substrate. These results suggest that in the closed form of the enzyme, the amphipathic C-terminal helix acts as a lid on the catalytic site to suppress activity in the absence of substrate lipid. Hydrophobic residues in this helix are also important for membrane interaction. Enzymatic activity and membrane binding measurements are consistent with a model whereby the C-terminal helix shifts to facilitate membrane interaction and orientation of the enzyme on the membrane interface for optimal catalysis (Fig. 1C). The amphipathic character of the C-terminal region is conserved in all of the PtdIns3Ks, and it probably represents a common regulatory element in the entire family of enzymes. This may also extend to the PtdIns3Krelated enzymes such as TOR where the equivalent region has been denoted as the “FATC” domain, which also associates with membranes.Early reports showed that methylated adenosine derivatives can inhibit autophagy. It was later demonstrated that the autophagy inhibitor 3-methyladenine (3-MA) inhibits PtdIns3Ks and that other general PtdIns3K inhibitors, such as wortmannin also inhibit autophagy. Although 3-MA shows some limited Vps34 preference in vitro, with an IC50 of 25 µM for Vps34 as compared with 60 µM for PtdIns3Kγ it is typically employed in cellular studies at a concentration of 10 mM, which can inhibit all PtdIns3Ks. Specific, potent inhibitors of Vps34 are acutely needed. All current PtdIns3K inhibitors are ATP-competitive, i.e., they target the ATP-binding site that is conserved among various PtdIns3K isotypes. The Vps34 structure suggests that the lack of potent Vps34 inhibitors could be accounted for by the uniquely constricted conformation of the Vps34 ATP-binding site in comparison with other PtdIns3Ks. Our structures of Vps34 in complexes with 3-MA and multitargeted PtdIns3K inhibitors (PIK-90, PIK-93 and PI-103) have provided insight into how this enzyme might be specifically inhibited. The slight preference for Vps34 inhibition by 3-MA probably arises from a hydrophobic ring specific to Vps34, which encircles the 3-methyl group of 3-MA. The insights arising from these structures have enabled us to develop a first generation of inhibitors with improved potency and Vps34 selectivity, e.g., the compound PT210 that has an IC50 of 0.45 µM as compared with 4.5 µM for PtdIns3Kγ. Further development of inhibitors guided by structures could lead to a new generation of improved inhibitors with applications as chemical tools to investigate PtdIns(3) P-dependendent pathways and as therapeutic agents.  相似文献   

16.
The highly conserved eukaryotic process of macroautophagy (autophagy) is a non-specific bulk-degradation program critical for maintaining proper cellular homeostasis, and for clearing aged and damaged organelles. This decision is inextricably dependent upon prevailing metabolic demands and energy requirements of the cell. Soluble monomeric decorin functions as a natural tumor repressor that antagonizes a variety of receptor tyrosine kinases. Recently, we discovered that decorin induces endothelial cell autophagy, downstream of VEGFR2. This process was wholly dependent upon Peg3, a decorin-inducible genomically imprinted tumor suppressor gene. However, the signaling cascades responsible have remained elusive. In this report we discovered that Vps34, a class III phosphoinositide kinase, is an upstream kinase required for Peg3 induction. Moreover, decorin triggered differential formation of Vps34/Beclin 1 complexes with concomitant dissolution of inhibitive Bcl-2/Beclin 1 complexes. Further, decorin inhibited anti-autophagic signaling via suppression of Akt/mTOR/p70S6K activity with the concurrent activation of pro-autophagic AMPK-mediated signaling cascades. Mechanistically, AMPK is downstream of VEGFR2 and inhibition of AMPK signaling abrogated decorin-evoked autophagy. Collectively, these findings hint at the complexity of the underlying molecular relays necessary for decorin-evoked endothelial cell autophagy and reveal important therapeutic targets for augmenting autophagy and combatting tumor angiogenesis.  相似文献   

17.
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a cyclic AMP-regulated chloride channel that plays an important role in regulating the volume of the lung airway surface liquid, and thereby mucociliary clearance and elimination of pathogens from the lung. In epithelial cells, cell surface CFTR abundance is determined in part by regulating both CFTR endocytosis from the apical plasma membrane and recycling back to the plasma membrane. We recently reported, using an activity-based chemical screen to identify active deubiquitinating enzymes (DUBs) in human airway epithelial cells, that Ubiquitin Specific Protease-10 (USP10) is located and active in the early endosomal compartment and regulates the deubiquitination of CFTR and thereby promotes its endocytic recycling. siRNA-mediated knockdown of USP10 increased the multi-ubiquitination and lysosomal degradation of CFTR and decreased the endocytic recycling and the half-life of CFTR in the apical membrane, as well as CFTR-mediated chloride secretion. Over-expression of wild-type USP10 reduced CFTR multi-ubiquitination and degradation, while over-expression of a dominant-negative USP10 promoted increased multi-ubiquitination and lysosomal degradation of CFTR. In the current study, we show localization and activity of USP10 in the early endosomal compartment of primary bronchial epithelial cells, as well as an interaction between CFTR and USP10 in this compartment. These studies demonstrate a novel function for USP10 in facilitating the deubiquitination of CFTR in early endosomes, thereby enhancing the endocytic recycling and cell surface expression of CFTR.  相似文献   

18.
Degradation of cytoplasmic components by autophagy requires the class III phosphatidylinositol 3 (PI(3))-kinase Vps34, but the mechanisms by which this kinase and its lipid product PI(3) phosphate (PI(3)P) promote autophagy are unclear. In mammalian cells, Vps34, with the proautophagic tumor suppressors Beclin1/Atg6, Bif-1, and UVRAG, forms a multiprotein complex that initiates autophagosome formation. Distinct Vps34 complexes also regulate endocytic processes that are critical for late-stage autophagosome-lysosome fusion. In contrast, Vps34 may also transduce activating nutrient signals to mammalian target of rapamycin (TOR), a negative regulator of autophagy. To determine potential in vivo functions of Vps34, we generated mutations in the single Drosophila melanogaster Vps34 orthologue, causing cell-autonomous disruption of autophagosome/autolysosome formation in larval fat body cells. Endocytosis is also disrupted in Vps34(-/-) animals, but we demonstrate that this does not account for their autophagy defect. Unexpectedly, TOR signaling is unaffected in Vps34 mutants, indicating that Vps34 does not act upstream of TOR in this system. Instead, we show that TOR/Atg1 signaling regulates the starvation-induced recruitment of PI(3)P to nascent autophagosomes. Our results suggest that Vps34 is regulated by TOR-dependent nutrient signals directly at sites of autophagosome formation.  相似文献   

19.
《Autophagy》2013,9(4):534-536
Vps34, a Class III phosphatidylinositol 3-kinase (PI3-kinase), produces phosphatidylinositol 3 phosphate (PI3P) and functions in various membrane traffic pathways including endocytosis, multivesicular body formation and autophagy. In mammalian cells, Vps34 forms a complex with Beclin 1, but it remains unclear how this Vps34 complex exerts its specific function on each membrane trafficking pathway. We recently identified mammalian Atg14, a new binding partner of the Vps34-Beclin 1 complex, using a computational approach. The Atg14 complex consists of Vps34, Beclin 1 and p150, but lacks UVRAG, which was previously reported to bind the Vps34-Beclin 1 complex. Atg14 localizes to isolation membrane/phagophore during starvation and is essential for autophagosome formation. In contrast, UVRAG primarily localizes to late endosomes. Since UVRAG shows homology with yeast Vps38, we speculate that it could be a mammalian Vps38 ortholog. These findings indicate that the Vps34-Beclin 1 complex has at least two distinct functions, which can be promoted by its binding partners Atg14 and UVRAG.  相似文献   

20.
Emerging interest on the interrelationship between the apoptotic and autophagy pathways in the context of cancer chemotherapy is providing exciting discoveries. Complexes formed between molecules from both pathways present potential targets for chemotherapeutics design as disruption of such complexes could alter cell survival. This study demonstrates an important role of Beclin‐1 and p53 interaction in cell fate decision of human embryonal carcinoma cells. The findings provide evidence for p53 interaction with Beclin‐1 through the BH3 domain of the latter. This interaction facilitated Beclin‐1 ubiquitination through lysine 48 linkage, resulting in proteasome‐mediated degradation, consequently maintaining a certain constitutive level of Beclin‐1. Disruption of Beclin‐1–p53 interaction through shRNA‐mediated down‐regulation of p53 reduced Beclin‐1 ubiquitination suggesting requirement of p53 for the process. Reduction of ubiquitination consequently resulted in an increase in Beclin‐1 levels with cells showing high autophagic activity. Enforced overexpression of p53 in the p53 down‐regulated cells restored ubiquitination of Beclin‐1 reducing its level and lowering autophagic activity. The Beclin‐1–p53 interaction was also disrupted by exposure to cisplatin‐induced stress resulting in higher level of Beclin‐1 because of lesser ubiquitination. This higher concentration of Beclin‐1 increased autophagy and offered protection to the cells from cisplatin‐induced death. Inhibition of autophagy by either pharmacological or genetic means during cisplatin exposure increased apoptotic death in vitro as well as in xenograft tumours grown in vivo confirming the protective nature of autophagy. Therefore, Beclin‐1–p53 interaction defines one additional molecular subroutine crucial for cell fate decisions in embryonal carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号