首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Williams ME  de Wit J  Ghosh A 《Neuron》2010,68(1):9-18
The function of the brain depends on highly specific patterns of connections between populations of neurons. The establishment of these connections requires the targeting of axons and dendrites to defined zones or laminae, the recognition of individual target cells, the formation of synapses on particular regions of the dendritic tree, and the differentiation of pre- and postsynaptic specializations. Recent studies provide compelling evidence that transmembrane adhesion proteins of the immunoglobulin, cadherin, and leucine-rich repeat protein families, as well as secreted proteins such as semaphorins and FGFs, regulate distinct aspects of neuronal connectivity. These observations suggest that the coordinated actions of a number of molecular signals contribute to the specification and differentiation of synaptic connections in the developing brain.  相似文献   

2.
As the old adage goes: practice makes perfect. Yet, the neural mechanisms by which rote repetition transforms a halting behavior into a fluid, effortless, and “automatic” action are not well understood. Here we consider the possibility that well-practiced motor sequences, which initially rely on higher-level decision-making circuits, become wholly specified in lower-level control circuits. We review studies informing this idea, discuss the constraints on such shift in control, and suggest approaches to pinpoint circuit-level changes associated with motor sequence learning.  相似文献   

3.
Schafer WR 《Current biology : CB》2005,15(17):R723-R729
Because of its small and well-characterized nervous system and amenability to genetic manipulation, the nematode Caenorhabditis elegans offers the promise of understanding the mechanisms underlying a whole animal's behavior at the molecular and cellular levels. In fact, this goal was a primary motivation behind the development of C. elegans as an experimental organism 40 years ago. Yet it has proven surprisingly difficult to obtain a mechanistic understanding of how the C. elegans nervous system generates behavior, despite the existence of a 'wiring diagram' that contains a degree of information about neural connectivity unparalleled in any organism. This review describes three types of information--molecular data on cellular neurochemistry, temporal information about neural activity patterns, and behavioral data on the consequences of neural ablation and manipulation--that, along with genetic analysis, may ultimately lead to a complete functional map of the C. elegans nervous system.  相似文献   

4.
5.
The emerging field of optogenetics allows for optical activation or inhibition of excitable cells. In 2005, optogenetic proteins were expressed in the nematode Caenorhabditis elegans for the first time. Since then, C. elegans has served as a powerful platform upon which to conduct optogenetic investigations of synaptic function, circuit dynamics and the neuronal basis of behaviour. The C. elegans nervous system, consisting of 302 neurons, whose connectivity and morphology has been mapped completely, drives a rich repertoire of behaviours that are quantifiable by video microscopy. This model organism's compact nervous system, quantifiable behaviour, genetic tractability and optical accessibility make it especially amenable to optogenetic interrogation. Channelrhodopsin‐2 (ChR2), halorhodopsin (NpHR/Halo) and other common optogenetic proteins have all been expressed in C. elegans. Moreover, recent advances leveraging molecular genetics and patterned light illumination have now made it possible to target photoactivation and inhibition to single cells and to do so in worms as they behave freely. Here, we describe techniques and methods for optogenetic manipulation in C. elegans. We review recent work using optogenetics and C. elegans for neuroscience investigations at the level of synapses, circuits and behaviour.  相似文献   

6.
7.
The anatomical and developmental constancy of Caenorhabditis elegans belies the complexity of its numerically small nervous system. Indeed, there is an increased appreciation of C. elegans as an organism to study systems level questions. Many recent studies focus on the circuits that control locomotion, egg-laying, and male mating behaviors and their modulation by multiple sensory stimuli.  相似文献   

8.
9.
10.
Li Y  Zhang ZW 《生理科学进展》1997,28(4):317-321
神经末梢突触囊泡循环包括锚靠、出胞、入胞及囊泡再生等步骤,由囊泡、轴浆及突触前膜的多种蛋白质的级联反应介导,其关键步骤的分子模型的确立,为进一步了解神经系统高级活动奠定了基础。  相似文献   

11.
Advances in the study of Drosophila melanogaster and Caenorhabditis elegans have provided key insights into the processes of neurotransmission and neuromodulation. Work in the past year has revealed that Unc-13 and Rab3a-interacting molecule regulate the conformational state of syntaxin to prime synaptic vesicle fusion. Analyses of synaptotagmin support its role as a putative calcium sensor triggering vesicular fusion and highlight the possible role of SNARE complex oligomerization in the fusion mechanism. Characterization of endophilin mutants demonstrates that kiss-and-run endocytosis is a major component of synaptic vesicle recycling. In neuromodulation, dcaps mutants provide the first genetic insight into possible roles of the CAPS protein in mediating dense core vesicle fusion and modulating synaptic vesicle fusion.  相似文献   

12.
The development of optogenetics, a family of methods for using light to control neural activity via light-sensitive proteins, has provided a powerful new set of tools for neurobiology. These techniques have been particularly fruitful for dissecting neural circuits and behaviour in the compact and transparent roundworm Caenorhabditis elegans. Researchers have used optogenetic reagents to manipulate numerous excitable cell types in the worm, from sensory neurons, to interneurons, to motor neurons and muscles. Here, we show how optogenetics applied to this transparent roundworm has contributed to our understanding of neural circuits.  相似文献   

13.
14.
Female reproductive decline is one of the first aging phenotypes in humans, manifested in increasing rates of infertility, miscarriage, and birth defects in children of mothers over 35. Recently, Caenorhabditis elegans (C. elegans) has been developed as a model to study reproductive aging, and several studies have advanced our knowledge of reproductive aging regulation in this organism. In this review, we describe our current understanding of reproductive cessation in C. elegans, including the relationship between oocyte quality, ovulation rate, progeny number, and reproductive span. We then discuss possible mechanisms of oocyte quality control, and provide an overview of the signaling pathways currently identified to be involved in reproductive span regulation in C. elegans. Finally, we extend the relevance of C. elegans reproductive aging studies to the issue of human female reproductive decline, and we discuss ideas concerning the relationship between reproductive aging and somatic longevity.  相似文献   

15.
16.
Research into conditions that improve axon regeneration has the potential to open a new door for treatment of brain injury caused by stroke and neurodegenerative diseases of aging, such as Alzheimer, by harnessing intrinsic neuronal ability to reorganize itself. Elucidating the molecular mechanisms of axon regeneration should shed light on how this process becomes restricted in the postnatal stage and in CNS and therefore could provide therapeutic targets for developing strategy to improve axon regeneration in adult CNS. In this review, we first discuss the general view about nerve regeneration and the advantages of using C. elegans as a model system to study axon regeneration. We then compare the conserved regeneration patterns and molecular mechanisms between C. elegans and vertebrates. Lastly, we discuss the power of femtosecond laser technology and its application in axon regeneration research.  相似文献   

17.
18.
19.
Research into conditions that improve axon regeneration has the potential to open a new door for treatment of brain injury caused by stroke and neurodegenerative diseases of aging, such as Alzheimer, by harnessing intrinsic neuronal ability to reorganize itself. Elucidating the molecular mechanisms of axon regeneration should shed light on how this process becomes restricted in the postnatal stage and in the CNS and therefore could provide therapeutic targets for developing strategies to improve axon regeneration in the adult CNS. In this review, we first discuss the general view about nerve regeneration and the advantages of using C. elegans as a model system to study axon regeneration. We then compare the conserved regeneration patterns and molecular mechanisms between C. elegans and vertebrates. Lastly, we discuss the power of femtosecond laser technology and its application in axon regeneration research.Key words: axon regeneration, C. elegans, genetics, femtosecond laser, neuronal circuits  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号