首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
LKB1 plays important roles in governing energy homeostasis by regulating AMP-activated protein kinase (AMPK) and other AMPK-related kinases, including the salt-inducible kinases (SIKs). However, the roles and regulation of LKB1 in lipid metabolism are poorly understood. Here we show that Drosophila LKB1 mutants display decreased lipid storage and increased gene expression of brummer, the Drosophila homolog of adipose triglyceride lipase (ATGL). These phenotypes are consistent with those of SIK3 mutants and are rescued by expression of constitutively active SIK3 in the fat body, suggesting that SIK3 is a key downstream kinase of LKB1. Using genetic and biochemical analyses, we identify HDAC4, a class IIa histone deacetylase, as a lipolytic target of the LKB1-SIK3 pathway. Interestingly, we found that the LKB1-SIK3-HDAC4 signaling axis is modulated by dietary conditions. In short-term fasting, the adipokinetic hormone (AKH) pathway, related to the mammalian glucagon pathway, inhibits the kinase activity of LKB1 as shown by decreased SIK3 Thr196 phosphorylation, and consequently induces HDAC4 nuclear localization and brummer gene expression. However, under prolonged fasting conditions, AKH-independent signaling decreases the activity of the LKB1-SIK3 pathway to induce lipolytic responses. We also identify that the Drosophila insulin-like peptides (DILPs) pathway, related to mammalian insulin pathway, regulates SIK3 activity in feeding conditions independently of increasing LKB1 kinase activity. Overall, these data suggest that fasting stimuli specifically control the kinase activity of LKB1 and establish the LKB1-SIK3 pathway as a converging point between feeding and fasting signals to control lipid homeostasis in Drosophila.  相似文献   

2.
In fasted mammals, glucose homeostasis is maintained through induction of the cAMP response element-binding protein (CREB) coactivator transducer of regulated CREB activity 2 (TORC2), which stimulates the gluconeogenic program in concert with the forkhead factor FOXO1. Here we show that starvation also triggers TORC activation in Drosophila, where it maintains energy balance through induction of CREB target genes in the brain. TORC mutant flies have reduced glycogen and lipid stores and are sensitive to starvation and oxidative stress. Neuronal TORC expression rescued stress sensitivity as well as CREB target gene expression in TORC mutants. During refeeding, increases in insulin signaling inhibited TORC activity through the salt-inducible kinase 2 (SIK2)-mediated phosphorylation and subsequent degradation of TORC. Depletion of neuronal SIK2 increased TORC activity and enhanced stress resistance. As disruption of insulin signaling also augmented TORC activity in adult flies, our results illustrate the importance of an insulin-regulated pathway that functions in the brain to maintain energy balance.  相似文献   

3.
During a state of fasting, the blood glucose level is maintained by hepatic gluconeogenesis. SIRT1 is an important metabolic regulator during nutrient deprivation and the liver-specific knockdown of SIRT1 resulted in decreased glucose production. We hypothesize that SIRT1 is responsible for the upregulation of insulin-suppressed gluconeogenic genes through the deacetylation of FOXO1. Treatment of primary cultured hepatocytes with resveratrol increased insulin-repressed PEPCK and G6Pase mRNA levels, which depend on SIRT1 activity. We found that the resveratrol treatment resulted in a decrease in the phosphorylation of Akt and FOXO1, which are independent of SIRT1 action. Fluorescence microscopy revealed that resveratrol caused the nuclear localization of FOXO1. In the nucleus, FOXO1 is deacetylated by SIRT1, which might make it more accessible to the IRE of the PEPCK and G6Pase promoter, causing an increase in their gene expression. Our results indicate that resveratrol upregulates the expression of gluconeogenic genes by attenuating insulin signaling and by deacetylating FOXO1, which are SIRT1-independent in the cytosol and SIRT1-dependent in the nucleus, respectively.  相似文献   

4.
Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation   总被引:19,自引:0,他引:19  
Yang Y  Hou H  Haller EM  Nicosia SV  Bai W 《The EMBO journal》2005,24(5):1021-1032
  相似文献   

5.
Cellular longevity is a complex process relevant to age-related diseases including but not limited to chronic illness such as diabetes and metabolic syndromes. Two gene families have been shown to play a role in the genetic regulation of longevity; the Sirtuin and FOXO families. It is also established that nuclear Sirtuins interact with and under specific cellular conditions regulate the activity of FOXO gene family proteins. Thus, we hypothesize that a mitochondrial Sirtuin (SIRT3) might also interact with and regulate the activity of the FOXO proteins. To address this we used HCT116 cells overexpressing either wild-type or a catalytically inactive dominant negative SIRT3. For the first time we establish that FOXO3a is also a mitochondrial protein and forms a physical interaction with SIRT3 in mitochondria. Overexpression of a wild-type SIRT3 gene increase FOXO3a DNA-binding activity as well as FOXO3a dependent gene expression. Biochemical analysis of HCT116 cells over expressing the deacetylation mutant, as compared to wild-type SIRT3 gene, demonstrated an overall oxidized intracellular environment, as monitored by increase in intracellular superoxide and oxidized glutathione levels. As such, we propose that SIRT3 and FOXO3a comprise a potential mitochondrial signaling cascade response pathway.  相似文献   

6.
7.
Salt-inducible kinase 2 (SIK2) is a serine/threonine protein kinase belonging to the AMP-activated protein kinase (AMPK) family. SIK2 has been shown to function in the insulin-signaling pathway during adipocyte differentiation and to modulate CREB-mediated gene expression in response to hormones and nutrients. However, molecular mechanisms underlying the regulation of SIK2 kinase activity remains largely elusive. Here we report a dynamic, post-translational regulation of its kinase activity that is coordinated by an acetylation-deaceytlation switch, p300/CBP-mediated Lys-53 acetylation inhibits SIK2 kinase activity, whereas HDAC6-mediated deacetylation restores the activity. Interestingly, overexpression of acetylation-mimetic mutant of SIK2 (SIK2-K53Q), but not the nonacetylatable K53R variant, resulted in accumulation of autophagosomes. Further consistent with a role in autophagy, knockdown of SIK2 abrogated autophagosome and lysosome fusion. Consequently, SIK2 and its kinase activity are indispensable for the removal of TDP-43Δ inclusion bodies. Our findings uncover SIK2 as a critical determinant in autophagy progression and further suggest a mechanism in which the interplay among kinase and deacetylase activities contributes to cellular protein pool homeostasis.  相似文献   

8.
To examine the function of SIRT1 in neuronal differentiation, we employed all-trans retinoic acid (ATRA)-induced differentiation of neuroblastoma cells. Nicotinamide inhibited neurite outgrowth and tyrosine hydroxylase (TH) expression. Inhibition of PARP or histone deacetylase did not inhibit TH expression, showing the effect to be SIRT1 specific. Expression of FOXO3a and its target proteins were increased during the differentiation and reduced by nicotinamide. FOXO3a deacetylation was increased by ATRA and blocked by nicotinamide. SIRT1 and FOXO3a siRNA inhibited ATRA-induced up-regulation of TH and differentiation. Taken together, these results indicate that SIRT1 is involved in ATRA-induced differentiation of neuroblastoma cells via FOXO3a.  相似文献   

9.
10.
11.
12.
13.
14.
SIK2在脂质和糖代谢及应激反应中的调节作用   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
17.
18.
19.
Aims/hypothesisSalt-inducible kinase 2 (SIK2) is downregulated in adipose tissue from obese or insulin-resistant individuals and inhibition of SIK isoforms results in reduced glucose uptake and insulin signalling in adipocytes. However, the regulation of SIK2 itself in response to insulin in adipocytes has not been studied in detail. The aim of our work was to investigate effects of insulin on various aspects of SIK2 function in adipocytes.MethodsPrimary adipocytes were isolated from human subcutaneous and rat epididymal adipose tissue. Insulin-induced phosphorylation of SIK2 and HDAC4 was analyzed using phosphospecific antibodies and changes in the catalytic activity of SIK2 with in vitro kinase assay. SIK2 protein levels were analyzed in primary adipocytes treated with the proteasome inhibitor MG132.ResultsWe have identified a novel regulatory pathway of SIK2 in adipocytes, which involves insulin-induced phosphorylation at Thr484. This phosphorylation is impaired in individuals with a reduced insulin action. Insulin stimulation does not affect SIK2 catalytic activity or cellular activity towards HDAC4, but is associated with increased SIK2 protein levels in adipocytes.Conclusion/interpretationOur data suggest that downregulation of SIK2 in the adipose tissue of insulin-resistant individuals can partially be caused by impaired insulin signalling, which might result in defects in SIK2 expression and function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号