首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian INO80 remodelling complex facilitates homologous recombination (HR), but the mechanism by which it does this is unclear. Budding yeast INO80 can remove H2A.Z/H2B dimers from chromatin and replace them with H2A/H2B dimers. H2A.Z is actively incorporated at sites of damage in mammalian cells, raising the possibility that H2A.Z may need to be subsequently removed for resolution of repair. Here, we show that H2A.Z in human cells is indeed rapidly removed from chromatin flanking DNA damage by INO80. We also report that the histone chaperone ANP32E, which is implicated in removing H2AZ from chromatin, similarly promotes HR and appears to work on the same pathway as INO80 in these assays. Importantly, we demonstrate that the HR defect in cells depleted of INO80 or ANP32E can be rescued by H2A.Z co‐depletion, suggesting that H2A.Z removal from chromatin is the primary function of INO80 and ANP32E in promoting homologous recombination.  相似文献   

2.
The budding yeast INO80 complex has a role in remodeling chromatin structure, and the SWR1 complex replaces a H2A/H2B dimer with a variant dimer, H2A.Z (Htz1)/H2B. It has been reported that these chromatin remodeling complexes contain Arp4 (actin-related protein) and actin in common and are recruited to HO endonuclease-induced DNA double-strand break (DSB) site. Reportedly, Ino80 can evict nucleosomes surrounding a HO-induced DSB; however, it has no apparent role to play in the repair of HO-induced DSB. Here we show that an essential factor for INO80 chromatin remodeling activity, Arp8, is involved in damage-induced sister chromatid recombination and interchromosomal recombination between heteroalleles. In contrast, arp6 mutants are proficient for recombination, indicating that the SWR1 complex does not promote recombination. Our data suggest that the remodeling of chromatin by the INO80 complex facilitates efficient homologous recombination upon DNA damages.  相似文献   

3.
4.
The INO80 chromatin remodeler is involved in many chromatin-dependent cellular functions. However, its role in pluripotency and cell fate transition is not fully defined. We examined the impact of Ino80 deletion in the naïve and primed pluripotent stem cells. We found that Ino80 deletion had minimal effect on self-renewal and gene expression in the naïve state, but led to cellular differentiation and de-repression of developmental genes in the transition toward and maintenance of the primed state. In the naïve state, INO80 pre-marked gene promoters that would adopt bivalent histone modifications by H3K4me3 and H3K27me3 upon transition into the primed state. In the primed state, in contrast to its known role in H2A.Z exchange, INO80 promoted H2A.Z occupancy at these bivalent promoters and facilitated H3K27me3 installation and maintenance as well as downstream gene repression. Together, our results identified an unexpected function of INO80 in H2A.Z deposition and gene regulation. We showed that INO80-dependent H2A.Z occupancy is a critical licensing step for the bivalent domains, and thereby uncovered an epigenetic mechanism by which chromatin remodeling, histone variant deposition and histone modification coordinately control cell fate.  相似文献   

5.
6.
INO80 and SWR1 are two closely related ATP-dependent chromatin remodeling complexes that share several subunits. Ino80 was reported to be recruited to the HO endonuclease-induced double-strand break (DSB) at the budding yeast mating-type locus, MAT. We find Swr1 similarly recruited in a manner dependent on the phosphorylation of H2A (gammaH2AX). This is not unique to cleavage at MAT; both Swr1 and Ino80 bind near an induced DSB on chromosome XV. Whereas Swr1 incorporates the histone variant H2A.Z into chromatin at promoters, H2A.Z levels do not increase at DSBs. Instead, H2A.Z, gammaH2AX and core histones are coordinately removed near the break in an INO80-dependent, but SWR1-independent, manner. Mutations in INO80-specific subunits Arp8 or Nhp10 impair the binding of Mre11 nuclease, yKu80 and ATR-related Mec1 kinase at the DSB, resulting in defective end-processing and checkpoint activation. In contrast, Mre11 binding, end-resection and checkpoint activation were normal in the swr1 strain, but yKu80 loading and error-free end-joining were impaired. Thus, these two related chromatin remodelers have distinct roles in DSB repair and checkpoint activation.  相似文献   

7.
8.
9.
10.
11.
Shen X  Ranallo R  Choi E  Wu C 《Molecular cell》2003,12(1):147-155
Actin-related proteins (Arps) and conventional actin are enigmatic components of many chromatin-remodeling enzyme complexes. The yeast INO80 ATP-dependent chromatin-remodeling complex contains stoichiometric amounts of Arp4, Arp5, Arp8, and actin. Here we have revealed functions of Arp5 and Arp8 by analysis of mutants. arp5 Delta and arp8 Delta mutants display an ino80 Delta phenotype. Purification of INO80 complexes from arp5 Delta and arp8 Delta cells shows that protein complexes remain intact but are compromised for INO80 ATPase activity, DNA binding, and nucleosome mobilization. The INO80 (arp8 Delta) complex is strikingly deficient, not only for the Arp8 subunit, but also for Arp4 and actin, suggesting an ordered assembly of Arps. Binding of Arp8 to the INO80 complex requires an N-terminal region of Ino80 adjacent to the conserved ATPase domain. GST-Arp8 binds preferentially to histones H3 and H4 in vitro, suggesting a histone chaperone function. These findings show direct involvement of Arps in the chromatin-remodeling process.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
The essential histone variant H2A.Z localises to both active and silent chromatin sites. In embryonic stem cells (ESCs), H2A.Z is also reported to co-localise with polycomb repressive complex 2 (PRC2) at developmentally silenced genes. The mechanism of H2A.Z targeting is not clear, but a role for the PRC2 component Suz12 has been suggested. Given this association, we wished to determine if polycomb functionally directs H2A.Z incorporation in ESCs. We demonstrate that the PRC1 component Ring1B interacts with multiple complexes in ESCs. Moreover, we show that although the genomic distribution of H2A.Z co-localises with PRC2, Ring1B and with the presence of CpG islands, H2A.Z still blankets polycomb target loci in the absence of Suz12, Eed (PRC2) or Ring1B (PRC1). Therefore we conclude that H2A.Z accumulates at developmentally silenced genes in ESCs in a polycomb independent manner.  相似文献   

20.
Histone variants are important components of eukaryotic chromatin and can alter chromatin structure to confer specialized functions. H2B variant histones are rare in nature but have evolved independently in the phyla Apicomplexa and Trypanasomatida. Here, we investigate the apicomplexan‐specific Plasmodium falciparum histone variant Pf H2B.Z and show that within nucleosomes Pf H2B.Z dimerizes with the H2A variant Pf H2A.Z and that Pf H2B.Z and Pf H2A.Z occupancy correlates in the subset of genes examined. These double‐variant nucleosomes also carry common markers of euchromatin like H3K4me3 and histone acetylation. Pf H2B.Z levels are elevated in intergenic regions across the genome, except in the var multigene family, where Pf H2A.Z/Pf H2B.Z double‐variant nucleosomes are only enriched in the promoter of the single active var copy and this enrichment is developmentally regulated. Importantly, this pattern seems to be specific for var genes and does not apply to other heterochromatic gene families involved in red blood cell invasion which are also subject to clonal expression. Thus, Pf H2A.Z/Pf H2B.Z double‐variant nucleosomes appear to have a highly specific function in the regulation of P. falciparum virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号