首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanistic basis of how cells respond to increased fatty acids (FAs) is murky but potentially involves receptor-mediated activation or inhibition by different FA classes. Holzer et?al. (2011) recently propose in Cell that expansion of intracellular membrane microdomains induced by saturated FA recruit and activate c-Src for JNK activation.  相似文献   

2.
Saturated free fatty acid (FFA) is a major source of metabolic stress that activates the c-Jun NH(2)-terminal kinase (JNK). This FFA-stimulated JNK pathway is relevant to hallmarks of metabolic syndrome, including insulin resistance. Here we used gene ablation studies in mice to demonstrate a central role for mixed-lineage protein kinases (MLK) in this signaling pathway. Saturated FFA causes protein kinase C (PKC)-dependent activation of MLK3 that subsequently causes increased JNK activity by a mechanism that requires the MAP kinase kinases MKK4 and MKK7. Loss of PKC, MLK3, MKK4, or MKK7 expression prevents FFA-stimulated JNK activation. Together, these data establish a signaling pathway that mediates effects of metabolic stress on insulin resistance.  相似文献   

3.
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as obesity and type 2 diabetes mellitus. These high levels of plasma FFA are proposed to play an important role for the development of insulin resistance but the mechanisms involved are still unclear. This study investigated the effects of saturated and unsaturated FFA on insulin sensitivity in parallel with mitochondrial function. C2C12 myotubes were treated for 24 h with 0.1 mM of saturated (palmitic and stearic) and unsaturated (oleic, linoleic, eicosapentaenoic, and docosahexaenoic) FFA. After this period, basal and insulin‐stimulated glucose metabolism and mitochondrial function were evaluated. Saturated palmitic and stearic acids decreased insulin‐induced glycogen synthesis, glucose oxidation, and lactate production. Basal glucose oxidation was also reduced. Palmitic and stearic acids impaired mitochondrial function as demonstrated by decrease of both mitochondrial hyperpolarization and ATP generation. These FFA also decreased Akt activation by insulin. As opposed to saturated FFA, unsaturated FFA did not impair glucose metabolism and mitochondrial function. Primary cultures of rat skeletal muscle cells exhibited similar responses to saturated FFA as compared to C2C12 cells. These results show that in muscle cells saturated FFA‐induced mitochondrial dysfunction associated with impaired insulin‐induced glucose metabolism. J. Cell. Physiol. 222:187–194, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Insulin is known to induce hepatocyte swelling, which triggers via integrins and c-Src kinase an activation of the epidermal growth factor receptor (EGFR) and subsequent cell proliferation (1). Free fatty acids (FFAs) are known to induce lipoapoptosis in liver cells in a c-Jun-NH2-terminal kinase (JNK)-dependent, but death receptor-independent way (2). As non-alcoholic steatohepatitis (NASH) is associated with hyperinsulinemia and increased FFA-blood levels, the interplay between insulin and FFA was studied with regard to hepatocyte proliferation and apoptosis in isolated rat and mouse hepatocytes. Saturated long chain FFAs induced apoptosis and JNK activation in primary rat hepatocytes, but did not activate the CD95 (Fas, APO-1) system, whereas insulin triggered EGFR activation and hepatocyte proliferation. Coadministration of insulin and FFAs, however, abolished hepatocyte proliferation and triggered CD95-dependent apoptosis due to a JNK-dependent association of the activated EGFR with CD95, subsequent CD95 tyrosine phosphorylation and formation of the death-inducing signaling complex (DISC). JNK inhibition restored the proliferative insulin effect in presence of FFAs and prevented EGFR/CD95 association, CD95 tyrosine phosphorylation and DISC formation. Likewise, in presence of FFAs insulin increased apoptosis in hepatocytes from wild type but not from Alb-Cre-FASfl/fl mice, which lack functional CD95. It is concluded that FFAs can shift insulin-induced hepatocyte proliferation toward hepatocyte apoptosis by triggering a JNK signal, which allows activated EGFR to associate with CD95 and to trigger CD95-dependent apoptosis. Such phenomena may contribute to the pathogenesis of NASH.  相似文献   

5.
The increased availability of saturated lipids has been correlated with development of insulin resistance, although the basis for this impairment is not defined. This work examined the interaction of saturated and unsaturated fatty acids (FA) with insulin stimulation of glucose uptake and its relation to the FA incorporation into different lipid pools in cultured human muscle. It is shown that basal or insulin-stimulated 2-deoxyglucose uptake was unaltered in cells preincubated with oleate, whereas basal glucose uptake was increased and insulin response was impaired in palmitate- and stearate-loaded cells. Analysis of the incorporation of FA into different lipid pools showed that palmitate, stearate, and oleate were similarly incorporated into phospholipids (PL) and did not modify the FA profile. In contrast, differences were observed in the total incorporation of FA into triacylglycerides (TAG): unsaturated FA were readily diverted toward TAG, whereas saturated FA could accumulate as diacylglycerol (DAG). Treatment with palmitate increased the activity of membrane-associated protein kinase C, whereas oleate had no effect. Mixture of palmitate with oleate diverted the saturated FA toward TAG and abolished its effect on glucose uptake. In conclusion, our data indicate that saturated FA-promoted changes in basal glucose uptake and insulin response were not correlated to a modification of the FA profile in PL or TAG accumulation. In contrast, these changes were related to saturated FA being accumulated as DAG and activating protein kinase C. Therefore, our results suggest that accumulation of DAG may be a molecular link between an increased availability of saturated FA and the induction of insulin resistance.  相似文献   

6.
We examined whether the additional demand for insulin secretion imposed by dietary saturated fat-induced insulin resistance during pregnancy is accommodated at late pregnancy, already characterized by insulin resistance. We also assessed whether effects of dietary saturated fat are influenced by PPARalpha activation or substitution of 7% of dietary fatty acids (FAs) with long-chain omega-3 FA, manipulations that improve insulin action in the nonpregnant state. Glucose tolerance at day 19 of pregnancy in the rat was impaired by high-saturated-fat feeding throughout pregnancy. Despite modestly enhanced glucose-stimulated insulin secretion (GSIS) in vivo, islet perifusions revealed an increased glucose threshold and decreased glucose responsiveness of GSIS in the saturated-fat-fed pregnant group. Thus, insulin resistance evoked by dietary saturated fat is partially countered by augmented insulin secretion, but compensation is compromised by impaired islet function. Substitution of 7% of saturated FA with long-chain omega-3 FA suppressed GSIS in vivo but did not modify the effect of saturated-fat feeding to impair GSIS by perifused islets. PPARalpha activation (24 h) rescued impaired islet function that was identified using perifused islets, but GSIS in vivo was suppressed such that glucose tolerance was not improved, suggesting modification of the feedback loop between insulin action and secretion.  相似文献   

7.
Lipotoxicity resulting from a high concentration of saturated fatty acids is closely linked to development of insulin resistance, as well as apoptosis in skeletal muscle. CTRP5, an adiponectin paralog, is known to activate AMPK and fatty acid oxidation; however, the effects of CTRP5 on palmitate-induced lipotoxicity in myocytes have not been investigated. We found that globular domain of CTRP5 (gCTRP5) prevented palmitate-induced apoptosis and insulin resistance in myocytes by inhibiting the activation of caspase-3, reactive oxygen species accumulation, and IRS-1 reduction. These beneficial effects of gCTRP5 are mainly attributed to an increase in fatty acid oxidation through phosphorylation of AMPK. These results provide a novel function of CTRP5, which may have preventive and therapeutic potential in management of obesity, insulin resistance, and type 2 diabetes mellitus.  相似文献   

8.
Arachidonic acid (AA) is generated via Rac-mediated phospholipase A2 (PLA2) activation in response to growth factors and cytokines and is implicated in cell growth and gene expression. In this study, we show that AA activates the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in a time- and dose-dependent manner. Indomethacin and nordihydroguaiaretic acid, potent inhibitors of cyclooxygenase and lipoxygenase, respectively, did not exert inhibitory effects on AA-induced SAPK/JNK activation, thereby indicating that AA itself could activate SAPK/JNK. As Rac mediates SAPK/JNK activation in response to a variety of stressful stimuli, we examined whether the activation of SAPK/JNK by AA is mediated by Rac1. We observed that AA-induced SAPK/JNK activation was significantly inhibited in Rat2-Rac1N17 dominant-negative mutant cells. Furthermore, treatment of AA induced membrane ruffling and production of hydrogen peroxide, which could be prevented by Rac1N17. These results suggest that AA acts as an upstream signal molecule of Rac, whose activation leads to SAPK/JNK activation, membrane ruffling and hydrogen peroxide production.  相似文献   

9.
Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis   总被引:16,自引:0,他引:16  
Elevated serum free fatty acids (FFAs) and hepatocyte lipoapoptosis are features of non-alcoholic fatty liver disease. However, the mechanism by which FFAs mediate lipoapoptosis is unclear. Because JNK activation is pivotal in both the metabolic syndrome accompanying non-alcoholic fatty liver disease and cellular apoptosis, we examined the role of JNK activation in FFA-induced lipoapoptosis. Multiple hepatocyte cell lines and primary mouse hepatocytes were treated in culture with monounsaturated fatty acids and saturated fatty acids. Despite equal cellular steatosis, apoptosis and JNK activation were greater during exposure to saturated versus monounsaturated FFAs. Inhibition of JNK, pharmacologically as well as genetically, reduced saturated FFA-mediated hepatocyte lipoapoptosis. Cell death was caspase-dependent and associated with mitochondrial membrane depolarization and cytochrome c release indicating activation of the mitochondrial pathway of apoptosis. JNK-dependent lipoapoptosis was associated with activation of Bax, a known mediator of mitochondrial dysfunction. As JNK can activate Bim, a BH3 domain-only protein capable of binding to and activating Bax, its role in lipoapoptosis was also examined. Small interfering RNA-targeted knock-down of Bim attenuated both Bax activation and cell death. Collectively the data indicate that saturated FFAs induce JNK-dependent hepatocyte lipoapoptosis by activating the proapoptotic Bcl-2 proteins Bim and Bax, which trigger the mitochondrial apoptotic pathway.  相似文献   

10.
11.
Failure of pancreatic beta-cells is the common characteristic of type 1 and type 2 diabetes. Type 1 diabetes mellitus is induced by destruction of pancreatic beta-cells which is mediated by an autoimmune mechanism and consequent inflammatory process. Various inflammatory cytokines and oxidative stress are produced during this process, which has been proposed to play an important role in mediating beta-cell destruction. The JNK pathway is also activated by such cytokines and oxidative stress, and is involved in beta-cell destruction. Type 2 diabetes is the most prevalent and serious metabolic disease, and beta-cell dysfunction and insulin resistance are the hallmark of type 2 diabetes. Under diabetic conditions, chronic hyperglycemia gradually deteriorates beta-cell function and aggravates insulin resistance. This process is called "glucose toxicity". Under such conditions, oxidative stress is provoked and the JNK pathway is activated, which is likely involved in pancreatic beta-cells dysfunction and insulin resistance. In addition, oxidative stress and activation of the JNK pathway are also involved in the progression of atherosclerosis which is often observed under diabetic conditions. Taken together, it is likely that oxidative stress and subsequent activation of the JNK pathway are involved in the pathogenesis of type 1 and type 2 diabetes.  相似文献   

12.
Excess serum free fatty acids (FFAs) are fundamental to the pathogenesis of insulin resistance. With high-fat feeding, FFAs activate NF-kB in target tissues, initiating negative crosstalk with insulin signaling. However, the mechanisms underlying FFA-dependent NF-kB activation remain unclear. Here, we demonstrate that the saturated FA, palmitate, requires Bcl10 for NF-kB activation in hepatocytes. Uptake of palmitate, metabolism to diacylglycerol, and subsequent activation of protein kinase C (PKC) appear to mechanistically link palmitate with Bcl10, known as a central component of a signaling complex that, along with CARMA3 and MALT1, activates NF-kB downstream of selected cell surface receptors. Consequently, Bcl10-deficient mice are protected from hepatic NF-kB activation and insulin resistance following brief high-fat diet, suggesting that Bcl10 plays a major role in the metabolic consequences of acute overnutrition. Surprisingly, while CARMA3 also participates in the palmitate response, MALT1 is completely dispensable, thereby revealing an apparent nonclassical role for Bcl10 in NF-kB signaling.  相似文献   

13.
Insulin resistance is a defining feature of type 2 diabetes and the metabolic syndrome. While the molecular mechanisms of insulin resistance are multiple, recent evidence suggests that attenuation of insulin signaling by c-Jun N-terminal kinase (JNK) may be a central part of the pathobiology of insulin resistance. Here we demonstrate that the p85alpha regulatory subunit of phosphoinositide 3-kinase (PI3K), a key mediator of insulin's metabolic actions, is also required for the activation of JNK in states of insulin resistance, including high-fat diet-induced obesity and JNK1 overexpression. The requirement of the p85alpha regulatory subunit for JNK occurs independently of its role as a component of the PI3K heterodimer and occurs only in response to specific stimuli, namely, insulin and tunicamycin, a chemical that induces endoplasmic reticulum stress. We further show that insulin and p85 activate JNK by via cdc42 and MKK4. The activation of this cdc42/JNK pathway requires both an intact N terminus and functional SH2 domains within the C terminus of the p85alpha regulatory subunit. Thus, p85alpha plays a dual role in regulating insulin sensitivity and may mediate cross talk between the PI3K and stress kinase pathways.  相似文献   

14.
Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease   总被引:49,自引:0,他引:49  
Short term high fat feeding in rats results specifically in hepatic fat accumulation and provides a model of non-alcoholic fatty liver disease in which to study the mechanism of hepatic insulin resistance. Short term fat feeding (FF) caused a approximately 3-fold increase in liver triglyceride and total fatty acyl-CoA content without any significant increase in visceral or skeletal muscle fat content. Suppression of endogenous glucose production (EGP) by insulin was diminished in the FF group, despite normal basal EGP and insulin-stimulated peripheral glucose disposal. Hepatic insulin resistance could be attributed to impaired insulin-stimulated IRS-1 and IRS-2 tyrosine phosphorylation. These changes were associated with activation of PKC-epsilon and JNK1. Ultimately, hepatic fat accumulation decreased insulin activation of glycogen synthase and increased gluconeogenesis. Treatment of the FF group with low dose 2,4-dinitrophenol to increase energy expenditure abrogated the development of fatty liver, hepatic insulin resistance, activation of PKC-epsilon and JNK1, and defects in insulin signaling. In conclusion, these data support the hypothesis hepatic steatosis leads to hepatic insulin resistance by stimulating gluconeogenesis and activating PKC-epsilon and JNK1, which may interfere with tyrosine phosphorylation of IRS-1 and IRS-2 and impair the ability of insulin to activate glycogen synthase.  相似文献   

15.
Incubation of Schistosoma mansoni lung-stage larvae in 90% corn oil for 6 hr was shown to elicit exposure of their, otherwise masked, apical membrane antigens to binding of anti-schistosome antibodies in the indirect membrane immunofluorescence test (IF). The possibility that unsaturated fatty acids (FA) are responsible for this effect was herein supported by IF data on ex vivo lung-stage larvae of S. mansoni and S. haematobium incubated for 1/2-2 hr with 80% corn oil, 50% olive oil, or 10-20 microM arachidonic acid. Treatment with unsaturated FA followed by filipin staining for cholesterol visualization indicated that unsaturated FA do not induce exposure of schistosomular surface membrane antigens via extraction of surface membrane cholesterol. Evidence using inhibitors and stimulators of neutral sphingomyelinase suggested that unsaturated FA perhaps activate worm tegument-bound neutral sphingomyelinase, leading to sphingomyelin hydrolysis and changes in surface membrane fluidity. Larval apical membrane antigens are, thus, allowed to diffuse freely in the plane of the membrane and bind specific antibodies in IE Excessive sphingomyelin hydrolysis might explain why high FA concentrations or long incubation periods eventually lead to larval death. The significant decrease (P < 0.01) in S. mansoni and increase (P < 0.02) in S. haematobium worm recovery in BALB/c mice given unsaturated FA-high and -poor diets, respectively, indicated these findings have in vivo relevance and led to the proposal that unsaturated FA likely plays a role in natural attrition of S. mansoni and S. haematobium lung-stage larvae.  相似文献   

16.
Recent studies have implicated inhibitor of kappaB kinase (IKK) in mediating fatty acid (FA)-induced insulin resistance. How IKK causes these effects is unknown. The present study addressed the role of nuclear factor kappaB (NFkappaB), the distal target of IKK activity, in FA-induced insulin resistance in L6 myotubes, an in vitro skeletal muscle model. A 6-h exposure of myotubes to the saturated FA palmitate reduced insulin-stimulated glucose uptake by approximately 30%, phosphatidylinositol-3 kinase and protein kinase B phosphorylation by approximately 40%, and stimulated inhibitor of kappaBalpha degradation and the nuclear translocation of NFkappaB. On the other hand, the Omega-3 polyunsaturated FA linolenate neither induced insulin resistance nor promoted nuclear localization of NFkappaB. Supporting the hypothesis that IKK acts through NFkappaB to cause insulin resistance, the IKK inhibitors acetylsalicylate and parthenolide prevented FA-induced reductions in insulin-stimulated glucose uptake and NFkappaB nuclear translocation. Most importantly, NFkappaB SN50, a cell-permeable peptide that inhibits NFkappaB nuclear translocation downstream of IKK, was sufficient to prevent palmitate-induced reductions in insulin-stimulated glucose uptake. Acetylsalicylate, but not NFkappaB SN50, prevented FA effects on phosphatidylinositol-3 kinase activity and protein kinase B phosphorylation. We conclude that FAs induce insulin resistance and activates NFkappaB in L6 cells. Furthermore, inhibition of NFkappaB activation, indirectly by preventing IKK activation or directly by inhibiting NFkappaB nuclear translocation, prevents the detrimental effects of palmitate on the metabolic actions of insulin in L6 myotubes.  相似文献   

17.
Jin Ye 《生物学前沿》2012,7(5):397-403
Fatty acids (FAs) are crucial nutrient for cell survival because they are required for synthesis of phospholipids in cellular membranes and for generation of energy. However, overaccumulation of FAs is toxic. In response to excessive FAs, cells are able to activate multiple reactions to prevent their overaccumulation. These reactions are mediated by Ubxd8, a cellular protein that specifically interacts with unsaturated but not saturated FAs. The selective interaction of Ubxd8 with unsaturated FAs may explain previous observations that only unsaturated but not saturated FAs are able to stimulate the regulatory reactions that prevent overaccumulation of FAs. Thus, understanding the mechanism through which Ubxd8 maintains cellular FA homeostasis may provide new insights into saturated FAinduced lipotoxicity.  相似文献   

18.
Members of the tumor necrosis factor receptor family as well as other receptors achieve their diverse biological effects through the activation of intracellular signals including the c-Jun N-terminal kinase (JNK) pathway. Such signals are believed to be delivered through mediators known as TNF receptor-associated factors (TRAFs). Although the N-terminal zinc finger region of TRAFs has been shown to be essential for downstream signaling, there is no indication yet as to the nature of its role or of the factors that distinguish the N terminus of TRAF 3, which does not activate JNK in the systems examined thus far, from those of other TRAFs, which do activate this pathway. In the present study, it is shown that, among the known TRAFs, localization to the insoluble cell pellet fraction consistently correlates with JNK activation and that both characteristics map to the TRAF N terminus. Furthermore, it is demonstrated that forced localization of TRAF 3 to the cell membrane is sufficient to convert this molecule into an activator of JNK. This suggests that one of the roles of the TRAF N terminus may be to participate in interactions that promote the recruitment of TRAFs to the membrane and that this localization effect plays an important role in TRAF-mediated JNK activation.  相似文献   

19.
Mitochondrial dysfunction has been associated with insulin resistance, obesity and diabetes. Hyperinsulinaemia and hyperlipidaemia are hallmarks of the insulin-resistant state. We sought to determine the contributions of high insulin and saturated fatty acid exposure to mitochondrial function and biogenesis in cultured myocytes. Differentiated C2C12 myotubes were left untreated or exposed to chronic high insulin or high palmitate. Mitochondrial function was determined assessing: oxygen consumption, mitochondrial membrane potential, ATP content and ROS (reactive oxygen species) production. We also determined the expression of several mitochondrial genes. Chronic insulin treatment of myotubes caused insulin resistance with reduced PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) signalling. Insulin treatment increased oxygen consumption but reduced mitochondrial membrane potential and ROS production. ATP cellular levels were maintained through an increased glycolytic rate. The expression of mitochondrial OXPHOS (oxidative phosphorylation) subunits or Mfn-2 (mitofusin 2) were not significantly altered in comparison with untreated cells, whereas expression of PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α) and UCPs (uncoupling proteins) were reduced. In contrast, saturated fatty acid exposure caused insulin resistance, reducing PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) activation while increasing activation of stress kinases JNK (c-Jun N-terminal kinase) and p38. Fatty acids reduced oxygen consumption and mitochondrial membrane potential while up-regulating the expression of mitochondrial ETC (electron chain complex) protein subunits and UCP proteins. Mfn-2 expression was not modified by palmitate. Palmitate-treated cells also showed a reduced glycolytic rate. Taken together, our findings indicate that chronic insulin and fatty acid-induced insulin resistance differentially affect mitochondrial function. In both conditions, cells were able to maintain ATP levels despite the loss of membrane potential; however, different protein expression suggests different adaptation mechanisms.  相似文献   

20.
G-protein-coupled receptors (GPCRs) typically activate c-Jun N-terminal kinase (JNK) through the G protein betagamma subunit (Gbetagamma), in a manner dependent on Rho family small GTPases, in mammalian cells. Here we show that JNK activation by the prototypic Gq-coupled alpha1B-adrenergic receptor is mediated by the alpha subunit of Gq (Galphaq), not by Gbetagamma, using a transient transfection system in human embryonic kidney cells. JNK activation by the alpha1B-adrenergic receptor/Galphaq was selectively mediated by mitogen-activated protein kinase kinase 4 (MKK4), but not MKK7. Also, MKK4 activation by the alpha1B-adrenergic receptor/Galphaq required c-Src and Rho family small GTPases. Furthermore, activation of the alpha1B-adrenergic receptor stimulated JNK activity through Src family tyrosine kinases and Rho family small GTPases in hamster smooth muscle cells that natively express the alpha1B-adrenergic receptor. Together, these results suggest that the alpha1B-adrenergic receptor/Galphaq may up-regulate JNK activity through a MKK4 pathway dependent on c-Src and Rho family small GTPases in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号