首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diverse optogenetic tools have allowed versatile control over neural activity. Many depolarizing and hyperpolarizing tools have now been developed in multiple laboratories and tested across different preparations, presenting opportunities but also making it difficult to draw direct comparisons. This challenge has been compounded by the dependence of performance on parameters such as vector, promoter, expression time, illumination, cell type and many other variables. As a result, it has become increasingly complicated for end users to select the optimal reagents for their experimental needs. For a rapidly growing field, critical figures of merit should be formalized both to establish a framework for further development and so that end users can readily understand how these standardized parameters translate into performance. Here we systematically compared microbial opsins under matched experimental conditions to extract essential principles and identify key parameters for the conduct, design and interpretation of experiments involving optogenetic techniques.  相似文献   

2.
细胞所处微环境的动态变化对细胞分化、细胞信号通路、个体生长以及疾病等有很大影响。光遗传学技术利用基因编码蛋白质表达并结合光控的手段为动态调控细胞信号通路、细胞定位和基因表达等方面提供了一种全新、无损、可逆、非侵入、时空特异性的研究手段。文中总结了光遗传学元件的类型以及涉及的细胞信号通路,并探讨了光控细胞信号通路的应用与未来发展前景。  相似文献   

3.
The opsin family of proteins.   总被引:16,自引:2,他引:14       下载免费PDF全文
  相似文献   

4.
5.
6.
There is no consensus on the best inhibitory optogenetic tool. Since Gi/o signalling is a native mechanism of neuronal inhibition, we asked whether Lamprey Parapinopsin (“Lamplight”), a Gi/o‐coupled bistable animal opsin, could be used for optogenetic silencing. We show that short (405 nm) and long (525 nm) wavelength pulses repeatedly switch Lamplight between stable signalling active and inactive states, respectively, and that combining these wavelengths can be used to achieve intermediate levels of activity. These properties can be applied to produce switchable neuronal hyperpolarisation and suppression of spontaneous spike firing in the mouse hypothalamic suprachiasmatic nucleus. Expressing Lamplight in (predominantly) ON bipolar cells can photosensitise retinas following advanced photoreceptor degeneration, with 405 and 525 nm stimuli producing responses of opposite sign in the output neurons of the retina. We conclude that bistable animal opsins can co‐opt endogenous signalling mechanisms to allow optogenetic inhibition that is scalable, sustained and reversible.  相似文献   

7.
8.
Electrogenic microbial rhodopsins (ion pumps and channelrhodopsins) are widely used to control the activity of neurons and other cells by light (optogenetics). Long-wavelength absorption by optogenetic tools is desirable for increasing the penetration depth of the stimulus light by minimizing tissue scattering and absorption by hemoglobin. A2 retinal (3,4-dehydroretinal) is a natural retinoid that serves as the chromophore in red-shifted visual pigments of several lower aquatic animals. Here we show that A2 retinal reconstitutes a fully functional archaerhodopsin-3 (AR-3) proton pump and four channelrhodopsin variants (CrChR1, CrChR2, CaChR1, and MvChR1). Substitution of A1 with A2 retinal significantly shifted the spectral sensitivity of all tested rhodopsins to longer wavelengths without altering other aspects of their function. The spectral shift upon substitution of A1 with A2 in AR-3 was close to that measured in other archaeal rhodopsins. Notably, the shifts in channelrhodopsins were larger than those measured in archaeal rhodopsins and close to those in animal visual pigments with similar absorption maxima of their A1-bound forms. Our results show that chromophore substitution provides a complementary strategy for improving the efficiency of optogenetic tools.  相似文献   

9.
The Toll receptor family and microbial recognition   总被引:23,自引:0,他引:23  
The survival of multicellular organisms is dependent on their ability to recognize invading microbial pathogens and to induce a variety of defense reactions. Recent evidence suggests that an evolutionarily ancient family of Toll-like receptors plays a crucial role in the detection of microbial infection and the induction of immune and inflammatory responses.  相似文献   

10.
Currently there is no general approach for achieving specific optogenetic control of genetically defined cell types in rats, which provide a powerful experimental system for numerous established neurophysiological and behavioral paradigms. To overcome this challenge we have generated genetically restricted recombinase-driver rat lines suitable for driving gene expression in specific cell types, expressing Cre recombinase under the control of large genomic regulatory regions (200-300 kb). Multiple tyrosine hydroxylase (Th)::Cre and choline acetyltransferase (Chat)::Cre lines were produced that exhibited specific opsin expression in targeted cell types. We additionally developed methods for utilizing optogenetic tools in freely moving rats and leveraged these technologies to clarify the causal relationship between dopamine (DA) neuron firing and positive reinforcement, observing that optical stimulation of DA neurons in the ventral tegmental area (VTA) of Th::Cre rats is sufficient to support vigorous intracranial self-stimulation (ICSS). These studies complement existing targeting approaches by extending the generalizability of optogenetics to traditionally non-genetically-tractable but vital animal models.  相似文献   

11.
Optogenetics is a rapidly evolving field of technology that allows optical control of genetically targeted biological systems at high temporal and spatial resolution. By heterologous expression of light-sensitive microbial membrane proteins, opsins, cell type-specific depolarization or silencing can be optically induced on a millisecond time scale. What started in a petri dish is applicable today to more complex systems, ranging from the dissection of brain circuitries in vitro to behavioral analyses in freely moving animals. Persistent technical improvement has focused on the identification of new opsins, suitable for optogenetic purposes and genetic engineering of existing ones. Optical stimulation can be combined with various readouts defined by the desired resolution of the experimental setup. Although recent developments in optogenetics have largely focused on neuroscience it has lately been extended to other targets, including stem cell research and regenerative medicine. Further development of optogenetic approaches will not only highly increase our insight into health and disease states but might also pave the way for a future use in therapeutic applications.  相似文献   

12.
13.
  1. Download : Download high-res image (227KB)
  2. Download : Download full-size image
  相似文献   

14.
Microbial engineering requires accurate information about cellular metabolic networks and a set of molecular tools that can be predictably applied to the efficient redesign of such networks. Recent advances in the field of metabolic engineering and synthetic biology, particularly the development of molecular tools for synthetic regulation in the static and dynamic control of gene expression, have increased our ability to efficiently balance the expression of genes in various biological systems. It would accelerate the creation of synthetic pathways and genetic programs capable of adapting to environmental changes in real time to perform the programmed cellular behavior. In this paper, we review current developments in the field of synthetic regulatory tools for static and dynamic control of microbial gene expression.  相似文献   

15.
In this work we evaluate the interaction of two optogenetic protein variants (CIB1, CIBN) with their complementary protein CRY2 by single-molecule tools in cell-free extracts. After validating the blue light induced co-localization of CRY2 and CIB1/N by Förster resonance energy transfer (FRET) in live cells, a fluorescence correlation spectroscopy (FCS) based method was developed to quantitatively determine the in vitro association of the extracted proteins. Our experiments suggest that CIB1, in comparison with CIBN, possesses a better coupling efficiency with CRY2 due to its intact protein structure and lower diffusion rate within 300 s detection window.  相似文献   

16.
Recent analysis of the complete mosquito Anopheles gambiae genome has revealed a far higher number of opsin genes than for either the Drosophila melanogaster genome or any other known insect. In particular, the analysis revealed an extraordinary opsin gene content expansion, whereby half are long wavelength-sensitive (LW) opsin gene duplicates. We analyzed this genomic data in relationship to other known insect opsins to estimate the relative timing of the LW opsin gene duplications and to identify "missing" paralogs in extant species. The inferred branching patterns of the LW opsin gene family phylogeny indicate at least one early gene duplication within insects before the emergence of the orders Orthoptera, Mantodea, Hymenoptera, Lepidoptera, and Diptera. These data predict the existence of one more LW opsin gene than is currently known from most insects. We tested this prediction by using a degenerate PCR strategy to screen the hymenopteran genome for novel LW opsin genes. We isolated two LW opsin gene sequences from each of five bee species, Bombus impatiens, B. terrestris, Diadasia afflicta, D. rinconis, and Osmia rufa, including 1.1 to 1.2 kb from a known (LW Rh1) and 1 kb from a new opsin gene (LW Rh2). Phylogenetic analysis suggests that the novel hymenopteran gene is orthologous to A. gambiae GPRop7, a gene that is apparently missing from D. melanogaster. Relative rate tests show that LW Rh2 is evolving at a slower rate than LW Rh1 and, therefore, may be a useful marker for higher-level hymenopteran systematics. Site-specific rate tests indicate the presence of several amino acid sites between LW Rh1 and LW Rh2 that have undergone shifts in selective constraints after duplication. These sites and others are discussed in relationship to putative structural and functional differences between the two genes.  相似文献   

17.
18.
Although computers are capable of storing a huge amount of data, there is a need for more sophisticated software to assemble and organize raw data into useful information for dissemination. Therefore we developed tools that assist in gathering and categorizing data for the study of microbial diversity and systematics. The first tool is for data retrieval from heterogeneous data sources on the INTERNET. The second tool provides researchers with a polyphasic view of microbes based on phenotypic characteristics and molecular sequence data.  相似文献   

19.
The computational reconstruction and analysis of cellular models of microbial metabolism is one of the great success stories of systems biology. The extent and quality of metabolic network reconstructions is, however, limited by the current state of biochemical knowledge. Can experimental high-throughput data be used to improve and expand network reconstructions to include unexplored areas of metabolism? Recent advances in experimental technology and analytical methods bring this aim an important step closer to realization. Data integration will play a particularly important part in exploiting the new experimental opportunities.  相似文献   

20.
New tools for discovering and characterizing microbial diversity   总被引:1,自引:0,他引:1  
To discover and characterize microbial diversity, approaches based on new sequencing technologies, novel isolation techniques, microfluidics, and metagenomics among others are being used. These approaches have contributed to discovery of novel genes from environmental samples, to massive characterization of functional and phylogenetic genes and to isolation of members of formerly uncultured yet ubiquitous groups like Verrucomicrobia, Acidobacteria, OP10, and methanogenic Archaea. Cheaper sequencing is key in this process by making available applications that were previously restricted to big research centers, complementing previously available methodologies and potentially replacing some of them. The new tools are reshaping the way we study the environment, increasing the resolution at which microbial communities, their complexities and dynamics, can be studied to reveal their genetic potential and their functional diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号