首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
3.
4.
Embryonic stem cell (ESC) pluripotency is orchestrated by distinct signaling pathways that are often targeted to maintain ESC self-renewal or their differentiation to other lineages. We showed earlier that inhibition of PKC signaling maintains pluripotency in mouse ESCs. Therefore, in this study, we investigated the importance of protein kinase C signaling in the context of rat ESC (rESC) pluripotency. Here we show that inhibition of PKC signaling is an efficient strategy to establish and maintain pluripotent rESCs and to facilitate reprogramming of rat embryonic fibroblasts to rat induced pluripotent stem cells. The complete developmental potential of rESCs was confirmed with viable chimeras and germ line transmission. Our molecular analyses indicated that inhibition of a PKCζ-NF-κB-microRNA-21/microRNA-29 regulatory axis contributes to the maintenance of rESC self-renewal. In addition, PKC inhibition maintains ESC-specific epigenetic modifications at the chromatin domains of pluripotency genes and, thereby, maintains their expression. Our results indicate a conserved function of PKC signaling in balancing self-renewal versus differentiation of both mouse and rat ESCs and indicate that targeting PKC signaling might be an efficient strategy to establish ESCs from other mammalian species.  相似文献   

5.
目的:探讨鸡胚胎干细胞(ESC)和精原干细胞(SSCs)在基因表达水平上的差异.方法:传至二代的ESC和SSCs,采用免疫荧光和碱性磷酸酶检测法联合鉴定其干细胞特性,RT-PCR方法检测两者相关基因的表达差异.结果:两种处于未分化状态时的干细胞基因表达存在差异:未分化的ESC表达基因GDF3基因和Nanog基因;SSCs表达特定基因c-kit、Cvh和Stra8基因.结论:两种干细胞在基因表达水平上有差异,为ESC与SSCs在基因水平上的鉴定提供参考依据.  相似文献   

6.
7.
8.
Graveley BR 《Cell》2011,147(1):22-24
In this issue of Cell, Gabut and colleagues (2011) identify a new splice variant of FOXP1 that directly regulates the expression of pluripotency genes. It endows human embryonic stem cells with their pluripotent nature and is required for the reprogramming of somatic cells to induced pluripotent stem cells.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Li X  Zhu L  Yang A  Lin J  Tang F  Jin S  Wei Z  Li J  Jin Y 《Cell Stem Cell》2011,8(1):46-58
Self-renewal and pluripotency are hallmarks of embryonic stem cells (ESCs). However, the signaling pathways that trigger their transition from self-renewal to differentiation remain elusive. Here, we report that calcineurin-NFAT signaling is both necessary and sufficient to switch ESCs from an undifferentiated state to lineage-specific cells and that the inhibition of this pathway can maintain long-term ESC self-renewal independent of leukemia inhibitory factor. Mechanistically, this pathway converges with the Erk1/2 pathway to regulate Src expression and promote the epithelial-mesenchymal transition (EMT), a process required for lineage specification in response to differentiation stimuli. Furthermore, calcineurin-NFAT signaling is activated when the earliest differentiation event occurs in mouse embryos, and its inhibition disrupts extraembryonic lineage development. Collectively, our results demonstrate that the NFAT and Erk1/2 cascades form a signaling switch for early lineage segregation in mouse ESCs and provide significant insights into the regulation of the balance between ESC self-renewal and early lineage specification.  相似文献   

16.
17.
18.
19.
20.

Background

REST is abundantly expressed in mouse embryonic stem cells (ESCs). Many genome-wide analyses have found REST to be an integral part of the ESC pluripotency network. However, experimental systems have produced contradictory findings: (1) REST is required for the maintenance of ESC pluripotency and loss of REST causes increased expression of differentiation markers, (2) REST is not required for the maintenance of ESC pluripotency and loss of REST does not change expression of differentiation markers, and (3) REST is not required for the maintenance of ESC pluripotency but loss of REST causes decreased expression of differentiation markers. These reports highlight gaps in our knowledge of the ESC network.

Methods

Employing biochemical and genome-wide analyses of various culture conditions and ESC lines, we have attempted to resolve some of the discrepancies in the literature.

Results

We show that Rest+/− and Rest−/− AB-1 mutant ESCs, which did not exhibit a role of REST in ESC pluripotency when cultured in the presence of feeder cells, did show impaired self-renewal when compared with the parental cells under feeder-free culture conditions, but only in early passage cells. In late passage cells, both Rest+/− and Rest−/− AB-1 ESCs restored pluripotency, suggesting a passage and culture condition-dependent response. Genome-wide analysis followed by biochemical validation supported this response and further indicated that the restoration of pluripotency was associated by increased expression of the ESC pluripotency factors. E14Tg2a.4 ESCs with REST-knockdown, which earlier showed a REST-dependent pluripotency when cultured under feeder-free conditions, as well as Rest−/− AB-1 ESCs, showed no REST-dependent pluripotency when cultured in the presence of either feeder cells or laminin, indicating that extracellular matrix components can rescue REST''s role in ESC pluripotency.

Conclusions

REST regulates ESC pluripotency in culture condition- and ESC line-dependent fashion and ESC pluripotency needs to be evaluated in a context dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号