首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In all organisms studied, elevated temperatures induce the expression of a variety of stress proteins, among them small Hsps (sHsp). sHsps are chaperones that prevent the unspecific aggregation of proteins by forming stable complexes with unfolded polypeptides. Reactivation of captured proteins requires the assistance of other ATP-dependent chaperones. How sHsps and ATP-dependent chaperones work together is poorly understood. Here, we analyzed the interplay of chaperones present in the cytosol of Saccharomyces cerevisiae. Specifically, we characterized the influence of Hsp104 and Ssa1 on the disassembly of Hsp26 x substrate complexes in vitro and in vivo. We show that recovery of proteins from aggregates in the cell requires the chaperones to work together with defined but overlapping functions. During reactivation, proteins are transferred from a stable complex with Hsp26 to Hsp104 and Hsp70. The need for ATP-dependent chaperones depends on the type of sHsp x substrate complex. Although Ssa1 is able to release substrate proteins from soluble Hsp26 x substrate complexes, Hsp104 is essential to dissociate substrate proteins from aggregates with incorporated sHsps. Our results are consistent with a model of several interrelated defense lines against protein aggregation.  相似文献   

2.
The highly abundant molecular chaperone Hsp90 functions with assistance from auxiliary factors, collectively referred to as Hsp90 cochaperones, and the Hsp70 system. Hsp104, a molecular chaperone required for stress tolerance and for maintenance of [psi(+)] prions in the budding yeast Saccharomyces cerevisiae, appears to collaborate only with the Hsp70 system. We now report that several cochaperones previously thought to be dedicated to Hsp90 are shared with Hsp104. We show that the Hsp90 cochaperones Sti1, Cpr7, and Cns1, which utilize tetratricopeptide repeat (TPR) domains to interact with a common surface on Hsp90, form complexes with Hsp104 in vivo and that Sti1 and Cpr7 interact with Hsp104 directly in vitro. The interaction is Hsp90 independent, as further emphasized by the fact that two distinct TPR domains of Sti1 are required for binding Hsp90 and Hsp104. In a striking parallel to the sequence requirements of Hsp90 for binding TPR proteins, binding of Sti1 to Hsp104 requires a related acidic sequence at the C-terminal tail of Hsp104. While Hsp90 efficiently sequesters the cochaperones during fermentative growth, respiratory conditions induce the interaction of a fraction of Hsp90 cochaperones with Hsp104. This suggests that cochaperone sharing may favor adaptation to altered metabolic conditions.  相似文献   

3.
4.
Cellular protein folding is challenged by environmental stress and aging, which lead to aberrant protein conformations and aggregation. One way to antagonize the detrimental consequences of protein misfolding is to reactivate vital proteins from aggregates. In the yeast Saccharomyces cerevisiae, Hsp104 facilitates disaggregation and reactivates aggregated proteins with assistance from Hsp70 (Ssa1) and Hsp40 (Ydj1). The small heat shock proteins, Hsp26 and Hsp42, also function in the recovery of misfolded proteins and prevent aggregation in vitro, but their in vivo roles in protein homeostasis remain elusive. We observed that after a sublethal heat shock, a majority of Hsp26 becomes insoluble. Its return to the soluble state during recovery depends on the presence of Hsp104. Further, cells lacking Hsp26 are impaired in the disaggregation of an easily assayed heat-aggregated reporter protein, luciferase. In vitro, Hsp104, Ssa1, and Ydj1 reactivate luciferase:Hsp26 co-aggregates 20-fold more efficiently than luciferase aggregates alone. Small Hsps also facilitate the Hsp104-mediated solubilization of polyglutamine in yeast. Thus, Hsp26 renders aggregates more accessible to Hsp104/Ssa1/Ydj1. Small Hsps partially suppress toxicity, even in the absence of Hsp104, potentially by sequestering polyglutamine from toxic interactions with other proteins. Hence, Hsp26 plays an important role in pathways that defend cells against environmental stress and the types of protein misfolding seen in neurodegenerative disease.  相似文献   

5.
Predicting protein localization in budding yeast   总被引:4,自引:0,他引:4  
MOTIVATION: Most of the existing methods in predicting protein subcellular location were used to deal with the cases limited within the scope from two to five localizations, and only a few of them can be effectively extended to cover the cases of 12-14 localizations. This is because the more the locations involved are, the poorer the success rate would be. Besides, some proteins may occur in several different subcellular locations, i.e. bear the feature of 'multiplex locations'. So far there is no method that can be used to effectively treat the difficult multiplex location problem. The present study was initiated in an attempt to address (1) how to efficiently identify the localization of a query protein among many possible subcellular locations, and (2) how to deal with the case of multiplex locations. RESULTS: By hybridizing gene ontology, functional domain and pseudo amino acid composition approaches, a new method has been developed that can be used to predict subcellular localization of proteins with multiplex location feature. A global analysis of the proteins in budding yeast classified into 22 locations was performed by jack-knife cross-validation with the new method. The overall success identification rate thus obtained is 70%. In contrast to this, the corresponding rates obtained by some other existing methods were only 13-14%, indicating that the new method is very powerful and promising. Furthermore, predictions were made for the four proteins whose localizations could not be determined by experiments, as well as for the 236 proteins whose localizations in budding yeast were ambiguous according to experimental observations. However, according to our predicted results, many of these 'ambiguous proteins' were found to have the same score and ranking for several different subcellular locations, implying that they may simultaneously exist, or move around, in these locations. This finding is intriguing because it reflects the dynamic feature of these proteins in a cell that may be associated with some special biological functions.  相似文献   

6.
Wilson WA  Roach PJ 《Cell》2002,111(2):155-158
The ability of cells to react appropriately to nutritional cues is of fundamental importance, and in budding yeast, a small number of intracellular protein kinases, PKA, Snf1p/AMP-activated kinase, TOR, Gcn2p, and the cyclin-dependent kinase Pho85p have key roles. A recently characterized enzyme, PAS kinase, may be a new member of this group of nutritional transducers.  相似文献   

7.
[URE3] is an amyloid-based prion of Ure2p, a regulator of nitrogen catabolism in Saccharomyces cerevisiae. The Ure2p of the human pathogen Candida albicans can also be a prion in S. cerevisiae. We find that overproduction of the disaggregating chaperone, Hsp104, increases the frequency of de novo [URE3] prion formation by the Ure2p of S. cerevisiae and that of C. albicans. This stimulation is strongly dependent on the presence of the [PIN(+)] prion, known from previous work to enhance [URE3] prion generation. Our data suggest that transient Hsp104 overproduction enhances prion generation through persistent effects on Rnq1 amyloid, as well as during overproduction by disassembly of amorphous Ure2 aggregates (generated during Ure2p overproduction), driving the aggregation toward the amyloid pathway. Overproduction of other major cytosolic chaperones of the Hsp70 and Hsp40 families (Ssa1p, Sse1p, and Ydj1p) inhibit prion formation, whereas another yeast Hsp40, Sis1p, modulates the effects of Hsp104p on both prion induction and prion curing in a prion-specific manner. The same factor may both enhance de novo prion generation and destabilize existing prion variants, suggesting that prion variants may be selected by changes in the chaperone network.  相似文献   

8.
9.
Genetic screening of yeast for sld (synthetic lethality with dpb11) mutations has identified replication proteins, including Sld2, -3, and -5, and clarified the molecular mechanisms underlying eukaryotic chromosomal DNA replication. Here, we report a new replication protein, Sld7, identified by rescreening of sld mutations. Throughout the cell cycle, Sld7 forms a complex with Sld3, which associates with replication origins in a complex with Cdc45, binds to Dpb11 when phosphorylated by cyclin-dependent kinase, and dissociates from origins once DNA replication starts. However, Sld7 does not move with the replication fork. Sld7 binds to the nonessential N-terminal portion of Sld3 and reduces its affinity for Cdc45, a component of the replication fork. Although Sld7 is not essential for cell growth, its absence reduces the level of cellular Sld3, delays the dissociation from origins of GINS, a component of the replication fork, and slows S-phase progression. These results suggest that Sld7 is required for the proper function of Sld3 at the initiation of DNA replication.  相似文献   

10.
Analysis of protein distribution in budding yeast   总被引:1,自引:0,他引:1  
Flow cytometry is a fast and sensitive method that allows monitoring of different cellular parameters on large samples of a population. Protein distributons give relevant information on growth dynamics, since they are related to the age distribution and depend on the law of growth of the population and the law of protein accumulation during the cell cycle. We analyzed protein distributions to evaluate alternative growth models for the budding yeast Saccharomyces cerevisiae and to monitor the changes in population dynamics that result from environmental modifications; such an analysis could potentially give parameters useful in the control of biotechnological processes. Theoretical protein distributions (taking into account the unequal division of yeast cells and the exponential law of protein accumulation during a cell cycle) quantitatively fit experimental distributions, once appropriate variability sources are introduced. Best fits are obtained when the protein threshold required for bud emergence increases at each new generation of parent cells.  相似文献   

11.
The molecular chaperone Hsp104 plays a central role in the clearance of aggregates after heat shock and the propagation of yeast prions. Hsp104's disaggregation activity and prion propagation have been linked to its ability to resolubilize or remodel protein aggregates. However, Hsp104 has also the capacity to catalyze protein aggregation of some substrates at specific conditions. Hence, it is a molecular chaperone with two opposing activities with respect to protein aggregation. In yeast models of Huntington's disease, Hsp104 is required for the aggregation and toxicity of polyglutamine (polyQ), but the expression of Hsp104 in cellular and animal models of Huntington's and Parkinson's disease protects against polyQ and α‐synuclein toxicity. Therefore, elucidating the molecular determinants and mechanisms underlying the ability of Hsp104 to switch between these two activities is of critical importance for understanding its function and could provide insight into novel strategies aimed at preventing or reversing the formation of toxic protein aggregation in systemic and neurodegenerative protein misfolding diseases. Here, we present an overview of the current molecular models and hypotheses that have been proposed to explain the role of Hsp104 in modulating protein aggregation and prion propagation. The experimental approaches and the evidences presented so far in relation to these models are examined. Our primary objective is to offer a critical review that will inspire the use of novel techniques and the design of new experiments to proceed towards a qualitative and quantitative understanding of the molecular mechanisms underlying the multifunctional properties of Hsp104 in vivo. © 2009 Wiley Periodicals, Inc. Biopolymers 93:252–276, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

12.
According to the recent experiments, proteins in budding yeast can be distinctly classified into 22 subcellular locations. Of these proteins, some bear the multi-locational feature, i.e., occur in more than one location. However, so far all the existing methods in predicting protein subcellular location were developed to deal with only the mono-locational case where a query protein is assumed to belong to one, and only one, subcellular location. To stimulate the development of subcellular location prediction, an augmentation procedure is formulated that will enable the existing methods to tackle the multi-locational problem as well. It has been observed thru a jackknife cross-validation test that the success rate obtained by the augmented GO-FnD-PseAA algorithm [BBRC 320 (2004) 1236] is overwhelmingly higher than those by the other augmented methods. It is anticipated that the augmented GO-FunD-PseAA predictor will become a very useful tool in predicting protein subcellular localization for both basic research and practical application.  相似文献   

13.
14.
A Amon 《The EMBO journal》1997,16(10):2693-2702
In budding yeast, stability of the mitotic B-type cyclin Clb2 is tightly cell cycle-regulated. B-type cyclin proteolysis is initiated during anaphase and persists throughout the G1 phase. Cln-Cdc28 kinase activity at START is required to repress B-type cyclin-specific proteolysis. Here, we show that Clb-dependent kinases, when expressed during G1, are also capable of repressing the B-type cyclin proteolysis machinery. Furthermore, we find that inactivation of Cln- and Clb-Cdc28 kinases is sufficient to trigger Clb2 proteolysis and sister-chromatid separation in G2/M phase-arrested cells, where the B-type cyclin-specific proteolysis machinery is normally inactive. Our results suggest that Cln- and Clb-dependent kinases are both capable of repressing B-type cyclin-specific proteolysis and that they are required to maintain the proteolysis machinery in an inactive state in S and G2/M phase-arrested cells. We propose that in yeast, as cells pass through START, Cln-Cdc28-dependent kinases inactivate B-type cyclin proteolysis. As Cln-Cdc28-dependent kinases decline during G2, Clb-Cdc28-dependent kinases take over this role, ensuring that B-type cyclin proteolysis is not activated during S phase and early mitosis.  相似文献   

15.
Hung GC  Masison DC 《Genetics》2006,173(2):611-620
Hsp104 is a hexameric protein chaperone that resolubilizes stress-damaged proteins from aggregates. Hsp104 promotes [PSI(+)] prion propagation by breaking prion aggregates, which propagate as amyloid fibers, into more numerous prion "seeds." Inactivating Hsp104 cures cells of [PSI(+)] and other amyloid-like yeast prions. Overexpressing Hsp104 also eliminates [PSI(+)], presumably by completely resolubilizing prion aggregates. Inexplicably, however, excess Hsp104 does not cure the other prions. Here we identify missense mutations in Hsp104's amino-terminal domain (NTD), which is conserved among Hsp100 proteins but whose function is unknown, that improve [PSI(+)] propagation. Hsp104Delta147, engineered to lack the NTD, supported [PSI(+)] and functioned normally in thermotolerance and protein disaggregation. Hsp104Delta147 failed to cure [PSI(+)] when overexpressed, however, implying that excess Hsp104 does not eliminate [PSI(+)] by direct dissolution of prion aggregates. Curing of [PSI(+)] by overexpressing catalytically inactive Hsp104 (Hsp104KT), which interferes with endogenous Hsp104, did not require the NTD. We further found that Hsp104 mutants defective in threading peptides through the hexamer pore had reduced ability to support [PSI(+)] in proportion to protein resolubilization defects, suggesting that [PSI(+)] propagation depends on this threading and that Hsp104 "breaks" prion aggregates by extracting protein monomers from the amyloid fibers.  相似文献   

16.
Biggins S  Bhalla N  Chang A  Smith DL  Murray AW 《Genetics》2001,159(2):453-470
Accurate chromosome segregation requires the precise coordination of events during the cell cycle. Replicated sister chromatids are held together while they are properly attached to and aligned by the mitotic spindle at metaphase. At anaphase, the links between sisters must be promptly dissolved to allow the mitotic spindle to rapidly separate them to opposite poles. To isolate genes involved in chromosome behavior during mitosis, we microscopically screened a temperature-sensitive collection of budding yeast mutants that contain a GFP-marked chromosome. Nine LOC (loss of cohesion) complementation groups that do not segregate sister chromatids at anaphase were identified. We cloned the corresponding genes and performed secondary tests to determine their function in chromosome behavior. We determined that three LOC genes, PDS1, ESP1, and YCS4, are required for sister chromatid separation and three other LOC genes, CSE4, IPL1, and SMT3, are required for chromosome segregation. We isolated alleles of two genes involved in splicing, PRP16 and PRP19, which impair alpha-tubulin synthesis thus preventing spindle assembly, as well as an allele of CDC7 that is defective in DNA replication. We also report an initial characterization of phenotypes associated with the SMT3/SUMO gene and the isolation of WSS1, a high-copy smt3 suppressor.  相似文献   

17.
Automated image analysis of protein localization in budding yeast   总被引:1,自引:0,他引:1  
MOTIVATION: The yeast Saccharomyces cerevisiae is the first eukaryotic organism to have its genome completely sequenced. Since then, several large-scale analyses of the yeast genome have provided extensive functional annotations of individual genes and proteins. One fundamental property of a protein is its subcellular localization, which provides critical information about how this protein works in a cell. An important project therefore was the creation of the yeast GFP fusion localization database by the University of California, San Francisco, USA (UCSF). This database provides localization data for 75% of the proteins believed to be encoded by the yeast genome. These proteins were classified into 22 distinct subcellular location categories by visual examination. Based on our past success at building automated systems to classify subcellular location patterns in mammalian cells, we sought to create a similar system for yeast. RESULTS: We developed computational methods to automatically analyze the images created by the UCSF yeast GFP fusion localization project. The system was trained to recognize the same location categories that were used in that study. We applied the system to 2640 images, and the system gave the same label as the previous assignments to 2139 images (81%). When only the highest confidence assignments were considered, 94.7% agreement was observed. Visual examination of the proteins for which the two approaches disagree suggests that at least some of the automated assignments may be more accurate. The automated method provides an objective, quantitative and repeatable assignment of protein locations that can be applied to new collections of yeast images (e.g. for different strains or the same strain under different conditions). It is also important to note that this performance could be achieved without requiring colocalization with any marker proteins. AVAILABILITY: The original images analyzed in this article are available at http://yeastgfp.ucsf.edu, and source code and results are available at http://murphylab.web.cmu.edu/software.  相似文献   

18.
Faithful chromosome segregation maintains chromosomal stability as errors in this process contribute to chromosomal instability (CIN), which has been observed in many diseases including cancer. Epigenetic regulation of kinetochore proteins such as Cse4 (CENP-A in humans) plays a critical role in high-fidelity chromosome segregation. Here we show that Cse4 is a substrate of evolutionarily conserved Cdc7 kinase, and that Cdc7-mediated phosphorylation of Cse4 prevents CIN. We determined that Cdc7 phosphorylates Cse4 in vitro and interacts with Cse4 in vivo in a cell cycle-dependent manner. Cdc7 is required for kinetochore integrity as reduced levels of CEN-associated Cse4, a faster exchange of Cse4 at the metaphase kinetochores, and defects in chromosome segregation, are observed in a cdc7-7 strain. Phosphorylation of Cse4 by Cdc7 is important for cell survival as constitutive association of a kinase-dead variant of Cdc7 (cdc7-kd) with Cse4 at the kinetochore leads to growth defects. Moreover, phospho-deficient mutations of Cse4 for consensus Cdc7 target sites contribute to CIN phenotype. In summary, our results have defined a role for Cdc7-mediated phosphorylation of Cse4 in faithful chromosome segregation.  相似文献   

19.
Amiodarone (AMD) is known to induce a transient increase in cytosolic Ca2+ level in cells of the yeast Saccharomyces cerevisiae. In the present study the effect of AMD on the thermotolerance and Hsp104p synthesis of the yeast was studied. AMD induced Hsp104p synthesis and increased survival of the yeast after a severe heat shock (50°C). The development of thermotolerance to a considerable extent depended on the presence of Hsp104p. The same effect was achieved by treatment with the classical uncoupler CCCP, which is also known to increase the cytosolic Ca2+ level. It is supposed that the change in intracellular Ca2+ concentration plays an important role in activation of the HSP104 gene expression and in increasing the thermotolerance of the yeast. The possible link between mitochondrial activity and calcium homeostasis is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号