首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic scaffolding in a G protein-coupled signaling system   总被引:1,自引:0,他引:1  
The INAD scaffold organizes a multiprotein complex that is essential for proper visual signaling in Drosophila photoreceptor cells. Here we show that one of the INAD PDZ domains (PDZ5) exists in a redox-dependent equilibrium between two conformations--a reduced form that is similar to the structure of other PDZ domains, and an oxidized form in which the ligand-binding site is distorted through formation of a strong intramolecular disulfide bond. We demonstrate transient light-dependent formation of this disulfide bond in vivo and find that transgenic flies expressing a mutant INAD in which PDZ5 is locked in the reduced state display severe defects in termination of visual responses and visually mediated reflex behavior. These studies demonstrate a conformational switch mechanism for PDZ domain function and suggest that INAD behaves more like a dynamic machine rather than a passive scaffold, regulating signal transduction at the millisecond timescale through cycles of conformational change.  相似文献   

2.
Drosophila inactivation no afterpotential D (INAD) is a PDZ domain-containing scaffolding protein that tethers components of the phototransduction cascade to form a supramolecular signaling complex. Here, we report the identification of eight INAD phosphorylation sites using a mass spectrometry approach. PDZ1, PDZ2, and PDZ4 each harbor one phosphorylation site, three phosphorylation sites are located in the linker region between PDZ1 and 2, one site is located between PDZ2 and PDZ3, and one site is located in the N-terminal region. Using a phosphospecific antibody, we found that INAD phosphorylated at Thr170/Ser174 was located within the rhabdomeres of the photoreceptor cells, suggesting that INAD becomes phosphorylated in this cellular compartment. INAD phosphorylation at Thr170/Ser174 depends on light, the phototransduction cascade, and on eye-Protein kinase C that is attached to INAD via one of its PDZ domains.  相似文献   

3.
INAD is a scaffolding protein containing five PSD95/dlg/zonular occludens-1 (PDZ) domains that tether NORPA (phospholipase Cbeta(4)), the TRP calcium channel, and eye-PKC in Drosophila photoreceptors. We previously showed that eye-PKC interacted with the second PDZ domain (PDZ2) of INAD. Sequence comparison with a prototypical type I PDZ domain predicts that PDZ2 is the best candidate among the five PDZ domains to recognize eye-PKC that contains a type I PDZ ligand, Ile-Thr-Ile-Ile, at its carboxyl terminus. Replacement of Ile(-3) in eye-PKC with charged residues resulted in a drastic reduction of the PDZ2 interaction. Substitution of a conserved His with Arg at the second alpha-helix of PDZ2 led to a reduced binding; however, a Leu replacement resulted in an enhanced eye-PKC association. We isolated and sequenced the InaD gene. The coding sequence of InaD contains nine exons spanning 3 kilobases. Translation of coding sequences from three wild-type alleles revealed three SNPs affecting residues, 282, 319, and 333 of INAD. These polymorphisms are localized in PDZ2. Interestingly, we found two of three PDZ2 variants displayed a greater affinity for eye-PKC. In summary, we evaluated the molecular basis of the eye-PKC and PDZ2 association by mutational analysis and concluded that PDZ2 of INAD is a type I domain important for the eye-PKC interaction.  相似文献   

4.
Several lines of evidence indicate that depletion of glutathione (GSH), a critical thiol antioxidant, is associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, GSH synthesis depends on the amino acid cysteine (Cys), and relatively little is known about the regulation of Cys in fibrosis. Cys and its disulfide, cystine (CySS), constitute the most abundant low-molecular weight thiol/disulfide redox couple in the plasma, and the Cys/CySS redox state (E(h) Cys/CySS) is oxidized in association with age and smoking, known risk factors for IPF. Furthermore, oxidized E(h) Cys/CySS in the culture media of lung fibroblasts stimulates proliferation and expression of transitional matrix components. The present study was undertaken to determine whether bleomycin-induced lung fibrosis is associated with a decrease in Cys and/or an oxidation of the Cys/CySS redox state and to determine whether these changes were associated with changes in E(h) GSH/glutathione disulfide (GSSG). We observed distinct effects on plasma GSH and Cys redox systems during the progression of bleomycin-induced lung injury. Plasma E(h) GSH/GSSG was selectively oxidized during the proinflammatory phase, whereas oxidation of E(h) Cys/CySS occurred at the fibrotic phase. In the epithelial lining fluid, oxidation of E(h) Cys/CySS was due to decreased food intake. Thus the data show that decreased precursor availability and enhanced oxidation of Cys each contribute to the oxidation of extracellular Cys/CySS redox state in bleomycin-induced lung fibrosis.  相似文献   

5.
Visual transduction in the compound eye of flies is a well-established model system for the study of G protein-coupled transduction pathways. Pivotal components of this signaling pathway, including the principal light-activated Ca(2+) channel transient receptor potential, an eye-specific protein kinase C, and the norpA-encoded phospholipase Cbeta, are assembled into a supramolecular signaling complex by the modular PDZ domain protein INAD. We have used immunoprecipitation assays to study the interaction of the heterotrimeric visual G protein with this INAD signaling complex. Light-activated Galpha(q)- guanosine 5'-O-(thiotriphosphate) and AlF(4)(-)-activated Galpha(q), but not Gbetagamma, form a stable complex with the INAD signaling complex. This interaction requires the presence of norpA-encoded phospholipase Cbeta, indicating that phospholipase Cbeta is the target of activated Galpha(q). Our data establish that the INAD signaling complex is a light-activated target of the phototransduction pathway, with Galpha(q) forming a molecular on-off switch that shuttles the visual signal from activated rhodopsin to INAD-linked phospholipase Cbeta.  相似文献   

6.
Extracellular thiol/disulfide redox environments are highly regulated in healthy individuals. The major thiol/disulfide redox couple in human plasma is cysteine (Cys) and its disulfide form, cystine (CySS). Oxidation of this redox couple, measured as a more positive steady-state redox potential (E(h)), is associated with risk factors for cardiovascular disease (CVD), including aging, smoking, obesity, and alcohol abuse. Rodent and vascular cell studies show that the extracellular redox state of Cys/CySS (E(h)CySS) can play a vital role in controlling CVD through proinflammatory signaling. This inflammatory signaling is regulated by cell-surface protein redox state and involves mitochondrial oxidation, nuclear factor-κB activation, and elevated expression of genes for monocyte recruitment to endothelial cells. Gene array and proteomics studies reveal the global nature of redox effects, and different cell types, e.g., endothelial cells, monocytes, fibroblasts, and epithelial cells, show cell-specific redox responses with different phenotypic traits, e.g., proliferation and apoptosis, which can contribute to CVD. The critical nature of the proinflammatory redox signaling and cell biology associated with E(h)CySS supports the use of plasma levels of Cys, CySS, and E(h)CySS as key indicators of vascular health. Plasma redox-state-based pharmacologic interventions to control or improve E(h)CySS may be effective in preventing CVD onset or progression.  相似文献   

7.
Drosophila INAD, which contains five tandem protein interaction PDZ domains, plays an important role in the G protein-coupled visual signal transduction. Mutations in InaD alleles display mislocalization of signaling molecules of phototransduction which include the essential effector, phospholipase C-beta (PLC-beta), which is also known as NORPA. The molecular and biochemical details of this functional link are unknown. We report that INAD directly binds to NORPA via two terminally positioned PDZ1 and PDZ5 domains. PDZ1 binds to the C-terminus of NORPA, while PDZ5 binds to an internal region overlapping with the G box-homology region (a putative G protein-interacting site). The NORPA proteins lacking binding sites, which display normal basal PLC activity, can no longer associate with INAD in vivo. These truncations cause significant reduction of NORPA protein expression in rhabdomeres and severe defects in phototransduction. Thus, the two terminal PDZ domains of INAD, through intermolecular and/or intramolecular interactions, are brought into proximity in vivo. Such domain organization allows for the multivalent INAD-NORPA interactions which are essential for G protein-coupled phototransduction.  相似文献   

8.
The rapid activation and feedback regulation of many G protein signaling cascades raises the possibility that the critical signaling proteins may be tightly coupled. Previous studies show that the PDZ domain containing protein INAD, which functions in Drosophila vision, coordinates a signaling complex by binding directly to the light-sensitive ion channel, TRP, and to phospholipase C (PLC). The INAD signaling complex also includes rhodopsin, protein kinase C (PKC), and calmodulin, though it is not known whether these proteins bind to INAD. In the current work, we show that rhodopsin, calmodulin, and PKC associate with the signaling complex by direct binding to INAD. We also found that a second ion channel, TRPL, bound to INAD. Thus, most of the proteins involved directly in phototransduction appear to bind to INAD. Furthermore, we found that INAD formed homopolymers and the homomultimerization occurred through two PDZ domains. Thus, we propose that the INAD supramolecular complex is a higher order signaling web consisting of an extended network of INAD molecules through which a G protein–coupled cascade is tethered.  相似文献   

9.
Sahu D  Debnath P  Takayama Y  Iwahara J 《FEBS letters》2008,582(29):3973-3978
The High Mobility Group B1 (HMGB1) protein plays important roles in both intracellular (reductive) and extracellular (oxidative) environments. We have carried out quantitative investigations of the redox chemistry involving Cys22 and Cys44 of the HMGB1 A-domain, which form an intramolecular disulfide bond. Using NMR spectroscopy, we analyzed the real-time kinetics of the redox reactions for the A-domain in glutathione and thioredoxin systems, and also determined the standard redox potential. Thermodynamic experiments showed that the Cys22-Cys44 disulfide bond stabilizes the folded state of the protein. These data suggest that the oxidized HMGB1 may accumulate even in cells under oxidative stress.

Structured summary

MINT-6795963:
txn (uniprotkb:P10599) and HMGB1 (uniprotkb:P09429) bind (MI:0408) by nuclear magnetic resonance (MI:0077)
  相似文献   

10.
The flavin-dependent monooxygenase from yeast (yFMO) oxidizes biological thiols such as cysteine, cysteamine, and glutathione. The enzyme makes a major contribution to the pools of oxidized thiols that, together with reduced glutathione from glutathione reductase, create the optimum cellular redox environment. We show that the activity of yFMO, as a soluble enzyme or in association with the ER membrane of microsomal fractions, is correlated with the redox potential. The enzyme is active under conditions normally found in the cytoplasm, but is inhibited as GSSG accumulates to give a redox potential similar to that found in the lumen of the ER. Site-directed mutations show that Cys 353 and Cys 339 participate in the redox regulation. Cys 353 is the principal residue in the redox-sensitive switch. We hypothesize that it may initiate formation of a mixed disulfide that is partially inhibitory to yFMO. The mixed disulfide may exchange with Cys 339 to form an intramolecular disulfide bond that is fully inhibitory.  相似文献   

11.
The light response in Drosophila photoreceptor cells is mediated by a series of proteins that assemble into a macromolecular complex referred to as the signalplex. The central player in the signalplex is inactivation no afterpotential D (INAD), a protein consisting of a tandem array of five PDZ domains. At least seven proteins bind INAD, including the transient receptor potential (TRP) channel, which depends on INAD for localization to the phototransducing organelle, the rhabdomere. However, the determinants required for localization of INAD are not known. In this work, we showed that INAD was required for retention rather than targeting of TRP to the rhabdomeres. In addition, we demonstrated that TRP bound to INAD through the COOH terminus, and this interaction was required for localization of INAD. Other proteins that depend on INAD for localization, phospholipase C and protein kinase C, also mislocalized. However, elimination of any other member of the signalplex had no impact on the spatial distribution of INAD. A direct interaction between TRP and INAD did not appear to have a role in the photoresponse independent of localization of multiple signaling components. Rather, the primary function of the TRP/ INAD complex is to form the core unit required for localization of the signalplex to the rhabdomeres.  相似文献   

12.
As an intermediate filament (IF)-based cytolinker protein, plectin plays a key role in the maintenance of cellular cytoarchitecture and serves at the same time as a scaffolding platform for signaling cascades. Consisting of six structural repeats (R1-6) and harboring binding sites for different IF proteins and proteins involved in signaling, the plectin C-terminal domain is of strategic functional importance. Depending on the species, it contains at least 13 cysteines, 4 of which reside in the R5 domain. To investigate the structural and biological functions of R5 cysteines, we used cysteine-to-serine mutagenesis and spectroscopic, biochemical, and functional analyses. Urea-induced unfolding experiments indicated that wild-type R5 in the oxidized, disulfide bond-mediated conformation was more stable than its cysteine-free mutant derivative. The binding affinity of R5 for vimentin was significantly higher, however, when the protein was in the reduced, more relaxed conformation. Of the four R5 cysteines, one (Cys4) was particularly reactive as reflected by its ability to form disulfide bridges with R5 Cys1 and to serve as a target for nitrosylation in vitro. Using immortalized endothelial cell cultures from mice, we show that endogenous plectin is nitrosylated in vivo, and we found that NO donor-induced IF collapse proceeds dramatically faster in plectin-deficient compared with wild-type cells. Our data suggest an antagonistic role of plectin in nitrosylation (oxidative stress)-mediated alterations of IF cytoarchitecture and a possible role of R5 Cys4 as a regulatory switch.  相似文献   

13.
Tissue factor (TF) is a transmembrane glycoprotein that plays distinct roles in the initiation of extrinsic coagulation cascade and thrombosis. TF contains two disulfide bonds, one each in the N-terminal and C-terminal extracellular domains. The C-domain disulfide, Cys186-Cys209, has a ?RHStaple configuration in crystal structures, suggesting that this disulfide carries high pre-stress. The redox state of this disulfide has been proposed to regulate TF encryption/decryption. Ablating the N-domain Cys49-Cys57 disulfide bond was found to increase the redox potential of the Cys186-Cys209 bond, implying an allosteric communication between the domains. Using molecular dynamics simulations, we observed that the Cys186-Cys209 disulfide bond retained the ?RHStaple configuration, whereas the Cys49-Cys57 disulfide bond fluctuated widely. The Cys186-Cys209 bond featured the typical ?RHStaple disulfide properties, such as a longer S-S bond length, larger C-S-S angles, and higher bonded prestress, in comparison to the Cys49-Cys57 bond. Force distribution analysis was used to sense the subtle structural changes upon ablating the disulfide bonds, and allowed us to identify a one-way allosteric communication mechanism from the N-terminal to the C-terminal domain. We propose a force propagation pathway using a shortest-pathway algorithm, which we suggest is a useful method for searching allosteric signal transduction pathways in proteins. As a possible explanation for the pathway being one-way, we identified a pronounced lower degree of conformational fluctuation, or effectively higher stiffness, in the N-terminal domain. Thus, the changes of the rigid domain (N-terminal domain) can induce mechanical force propagation to the soft domain (C-terminal domain), but not vice versa.  相似文献   

14.
Glutathione biosynthesis is a key component in the network of plant stress responses that counteract oxidative damage and maintain intracellular redox environment. Using a combination of mass spectrometry and site-directed mutagenesis, we examined the response of Arabidopsis thaliana glutamate-cysteine ligase (GCL) to changes in redox environment. Mass spectrometry identified two disulfide bonds (Cys186-Cys406 and Cys349-Cys364) in GCL. Mutation of either Cys-349 or Cys-364 to a Ser reduced reaction rate by twofold, but substitution of a Ser for either Cys-186 or Cys-406 decreased activity by 20-fold and abrogated the response to changes in redox environment. Redox titrations show that the regulatory disulfide bond has a midpoint potential comparable with other known redox-responsive plant proteins. Mutation of Cys-102, Cys-251, Cys-349, or Cys-364 did not alter the response to redox environment, indicating that modulation of activity depends on the Cys186-Cys406 disulfide bond. In vivo analysis of GCL in Arabidopsis root extracts revealed that multiple oxidative stresses altered the distribution of oxidized (active) and reduced (inactive) enzyme and that this change correlated with increased GCL activity. The thiol-based regulation of GCL provides a posttranslational mechanism for modulating enzyme activity in response to in vivo redox environment and suggests a role for oxidative signaling in the maintenance of glutathione homeostasis in plants.  相似文献   

15.
Mercuric reductase, with FAD and a reducible disulfide at the active site, catalyzes the two-electron reduction of Hg(II) by NADPH. Addition of reducing equivalents rapidly produces a spectrally distinct EH2 form of the enzyme containing oxidized FAD and reduced active site thiols. Formation of EH2 has previously been reported to require only 2 electrons for reduction of the active site disulfide. We present results of anaerobic titrations of mercuric reductase with NADPH and dithionite showing that the equilibrium conversion of oxidized enzyme to EH2 actually requires 2 equiv of reducing agent or 4 electrons. Kinetic studies conducted both at 4 degrees C and at 25 degrees C indicate that reduction of the active site occurs rapidly, as previously reported [Sahlman, L., & Lindskog, S. (1983) Biochem. Biophys. Res. Commun. 117, 231-237]; this is followed by a slower reduction of another redox group via reaction with the active site. Thiol titrations of denatured Eox and EH2 enzyme forms show that an additional disulfide is the group in communication with the active site. [14C]Iodoacetamide labeling experiments demonstrate that the C-terminal residues, Cys558 and Cys559, are involved in this disulfide. The fluorescence, but not the absorbance, of the enzyme-bound FAD was found to be highly dependent on the redox state of the C-terminal thiols. Thus, Eox with Cys558 and Cys559 as thiols exhibits less than 50% of the fluorescence of Eox where these residues are present as a disulfide, indicating that the thiols remain intimately associated with the active site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In Drosophila photoreceptors, phospholipase C (PLC) and other signalling components form multiprotein structures through the PDZ scaffold protein INAD. Association between PLC and INAD is important for termination of responses to light; the underlying mechanism is, however, unclear. Here we report that the maintenance of large amounts of PLC in the signalling membranes by association with INAD facilitates response termination, and show that PLC functions as a GTPase-activating protein (GAP). The inactivation of the G protein by its target, the PLC, is crucial for reliable production of single-photon responses and for the high temporal and intensity resolution of the response to light.  相似文献   

17.
Drosophila melanogaster thioredoxin reductase-1 (DmTrxR-1) is a key flavoenzyme in dipteran insects, where it substitutes for glutathione reductase. DmTrxR-1 belongs to the family of dimeric, high Mr thioredoxin reductases, which catalyze reduction of thioredoxin by NADPH. Thioredoxin reductase has an N-terminal redox-active disulfide (Cys57-Cys62) adjacent to the flavin and a redox-active C-terminal cysteine pair (Cys489'-Cys490' in the other subunit) that transfer electrons from Cys57-Cys62 to the substrate thioredoxin. Cys489'-Cys490' functions similarly to Cys495-Sec496 (Sec = selenocysteine) and Cys535-XXXX-Cys540 in human and parasite Plasmodium falciparum enzymes, but a catalytic redox center formed by adjacent Cys residues, as observed in DmTrxR-1, is unprecedented. Our data show, for the first time in a high Mr TrxR, that DmTrxR-1 oscillates between the 2-electron reduced state, EH2, and the 4-electron state, EH4, in catalysis, after the initial priming reduction of the oxidized enzyme (Eox) to EH2. The reductive half-reaction consumes 2 eq of NADPH in two observable steps to produce EH4. The first equivalent yields a FADH--NADP+ charge-transfer complex that reduces the adjacent disulfide to form a thiolate-flavin charge-transfer complex. EH4 reacts with thioredoxin rapidly to produce EH2. In contrast, Eox formation is slow and incomplete; thus, EH2 of wild-type cannot reduce thioredoxin at catalytically competent rates. Mutants lacking the C-terminal redox center, C489S, C490S, and C489S/C490S, are incapable of reducing thioredoxin and can only be reduced to EH2 forms. Additional data suggest that Cys57 attacks Cys490' in the interchange reaction between the N-terminal dithiol and the C-terminal disulfide.  相似文献   

18.
Redox state of glutathione in human plasma   总被引:5,自引:0,他引:5  
Thiol and disulfide forms of glutathione (GSH) and cysteine (Cys) were measured in plasma from 24 healthy individuals aged 25-35 and redox potential values (E(h)) for thiol/disulfide couples were calculated using the Nernst equation. Although the concentration of GSH (2.8 +/- 0.9 microM) was much greater than that of GSSG (0.14 +/- 0.04 microM), the redox potential of the GSSG/2GSH pool (-137 +/- 9 mV) was considerably more oxidized than values for tissues and cultured cells (-185 to -258 mV). This indicates that a rapid oxidation of GSH occurs upon release into plasma. The difference in values between individuals was remarkably small, suggesting that the rates of reduction and oxidation in the plasma are closely balanced to maintain this redox potential. The redox potential for the Cys and cystine (CySS) pool (-80 +/- 9 mV) was 57 mV more oxidized, showing that the GSSG/2GSH and the CySS/2Cys pools are not in redox equilibrium in the plasma. Potentials for thiol/disulfide couples involving CysGly were intermediate between the values for these couples. Regression analyses showed that the redox potentials for the different thiol/disulfide couples within individuals were correlated, with the E(h) for CySS-mono-Gly/(Cys. CysGly) providing the best correlation with other low molecular weight pools as well as protein disulfides of GSH, CysGly and Cys. These results suggest that E(h) values for GSSG/2GSH and CySS-mono-Gly/(Cys. CysGly) may provide useful means to quantitatively express the oxidant/antioxidant balance in clinical and epidemiologic studies.  相似文献   

19.
We present a study of the interaction between thioredoxin and the model enzyme pI258 arsenate reductase (ArsC) from Staphylococcus aureus. ArsC catalyses the reduction of arsenate to arsenite. Three redox active cysteine residues (Cys10, Cys82 and Cys89) are involved. After a single catalytic arsenate reduction event, oxidized ArsC exposes a disulphide bridge between Cys82 and Cys89 on a looped-out redox helix. Thioredoxin converts oxidized ArsC back towards its initial reduced state. In the absence of a reducing environment, the active-site P-loop of ArsC is blocked by the formation of a second disulphide bridge (Cys10-Cys15). While fully reduced ArsC can be recovered by exposing this double oxidized ArsC to thioredoxin, the P-loop disulphide bridge is itself inaccessible to thioredoxin. To reduce this buried Cys10-Cys15 disulphide-bridge in double oxidized ArsC, an intra-molecular Cys10-Cys82 disulphide switch connects the thioredoxin mediated inter-protein thiol-disulphide transfer to the buried disulphide. In the initial step of the reduction mechanism, thioredoxin appears to be selective for oxidized ArsC that requires the redox helix to be looped out for its interaction. The formation of a buried disulphide bridge in the active-site might function as protection against irreversible oxidation of the nucleophilic cysteine, a characteristic that has also been observed in the structurally similar low molecular weight tyrosine phosphatase.  相似文献   

20.
Zhu JW  Yuan JF  Yang HM  Wang ST  Zhang CG  Sun LL  Yang H  Zhang H 《Biochimie》2012,94(3):617-627
Extracellular cysteine (Cys)/cystine (CySS) redox potential (Eh) has been shown to regulate diverse biological processes, including enzyme catalysis, gene expression, and signaling pathways for cell proliferation and apoptosis, and is sensitive to aging, smoking, and other host factors. However, the effects of extracellular Cys/CySS redox on the nervous system remain unknown. In this study, we explored the role of extracellular Cys/CySS Eh in metabotropic glutamate receptor 5 (mGlu5) activation to understand the mechanism of its regulation of nerve cell growth and activation. We showed that the oxidized Cys/CySS redox state (0 mV) in C6 glial cells induced a significant increase in mGlu5-mediated phosphorylation of extracellular signal-regulated kinase (ERK), blocked by an inhibitor of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (MEK), U0126, a nonpermeant alkylating agent, 4-acetamide-4′-maleimidylstilbene-2,2′-disulfonic acid (AMS), and a specific mGlu5 antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), respectively. ERK phosphorylation under oxidized extracellular Cys/CySS Eh was confirmed in mGlu5-overexpressed human embryonic kidney 293 (HEK293) cells. Oxidized extracellular Cys/CySS Eh also stimulated the generation of intracellular reactive oxygen species (ROS) involved in the phosphorylation of ERK by mGlu5. Moreover, activation of mGlu5 by oxidized extracellular Cys/CySS Eh was found to affect expression of NF-κB and inducible nitric oxide synthase (iNOS). The results also showed that extracellular Cys/CySS Eh involved in the activation of mGlu5 controlled cell death and cell activation in neurotoxicity. In addition, plasma Cys/CySS Eh was found to be associated with the process of Parkinson’s disease (PD) in a rotenone-induced rat model of PD together with dietary deficiency and supplementation of sulfur amino acid (SAA). The effects of extracellular Cys/CySS Eh on SAA dietary deficiency in the rotenone-induced rat model of PD was almost blocked by MPEP pretreatment, further indicating that oxidized extracellular Cys/CySS Eh plays a role in mGlu5 activity. Taken together, the results indicate that mGlu5 can be activated by extracellular Cys/CySS redox in nerve cells, which possibly contributes to the process of PD. These in vitro and in vivo findings may aid in the development of potential new nutritional strategies that could assist in slowing the degeneration of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号