首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A DExD/H protein, RIG-I, is critical in innate antiviral responses by sensing viral RNA. Here we show that RIG-I recognizes two distinct viral RNA patterns: double-stranded (ds) and 5'ppp single-stranded (ss) RNA. The binding of RIG-I with dsRNA or 5'ppp ssRNA in the presence of ATP produces a common structure, as suggested by protease digestion. Further analyses demonstrated that the C-terminal domain of RIG-I (CTD) recognizes these RNA patterns and CTD coincides with the autorepression domain. Structural analysis of CTD by NMR spectroscopy in conjunction with mutagenesis revealed that the basic surface of CTD with a characteristic cleft interacts with RIG-I ligands. Our results suggest that the bipartite structure of CTD regulates RIG-I on encountering viral RNA patterns.  相似文献   

3.
Retinoic acid-inducible gene I (RIG-I) recognizes specific molecular patterns of viral RNAs for inducing type I interferon. The C-terminal domain (CTD) of RIG-I binds to double-stranded RNA (dsRNA) with the 5′-triphosphate (5′-PPP), which induces a conformational change in RIG-I to an active form. It has been suggested that RIG-I detects infection of influenza A virus by recognizing the 5′-triphosphorylated panhandle structure of the viral RNA genome. Influenza panhandle RNA has a unique structure with a sharp helical bending. In spite of extensive studies of how viral RNAs activate RIG-I, whether the structural elements of the influenza panhandle RNA confer the ability to activate RIG-I signaling has been poorly explored. Here, we investigated the dynamics of the influenza panhandle RNA in complex with RIG-I CTD using NMR spectroscopy and showed that the bending structure of the panhandle RNA negates the requirement of a 5′-PPP moiety for RIG-I activation.  相似文献   

4.
Kim KS 《Cell Stem Cell》2011,9(3):179-181
Recent publications in Cell Stem Cell (Son et?al., 2011; Ambasudhan et?al., 2011), PNAS (Pfisterer et?al., 2011), and Nature (Caiazzo et?al., 2011; Pang et?al., 2011; Yoo et?al., 2011) report that functional neurons can be directly generated from human fibroblast cells without going through the pluripotent state.  相似文献   

5.
Oshiumi H  Matsumoto M  Seya T 《Uirusu》2011,61(2):153-161
Viral RNA is recognized by RIG-I-like receptors and Toll-like receptors. RIG-I is a cytoplasmic viral RNA sensor. High Mobility Group Box (HMGB) proteins and DExD/H box RNA helicases, such as DDX3 and 60, associate with viral RNA. Those proteins promotes the RIG-I binding to viral RNA. RIG-I triggers the signal via IPS-1 adaptor molecule to induce type I IFN. RIG-I harbors Lys63-linked polyubiquitination by Riplet and TRIM25 ubiquitin ligases. The polyubiquitination is essential for RIG-I-mediated signaling. Toll-like receptors are located in endosome. TLR3 recognizes viral double-stranded RNA, and TLR7 and 8 recognize single-strand RNA. Virus has the ability to suppress these innate immune response. For example, to inhibit RIG-I-mediated signaling, HCV core protein suppresses the function of DDX3. In addition, HCV NS3-4A protein cleaves IPS-1 to inhibit the signal. Molecular mechanism of how viral RNA is recognized by innate immune system will make great progress on our understanding of how virus escapes from host immune system.  相似文献   

6.
Several recent reports (Mayshar et?al., 2010; Laurent et?al., 2011; Lister et?al., 2011; Gore et?al., 2011; Hussein et?al., 2011) uncover genetic and epigenetic alterations in induced pluripotent stem cells, stimulating debate about their future. However, will these important findings really impact what we hope to gain?  相似文献   

7.
8.
Highlights? RIG-I is activated by the incoming RNA virus nucleocapsids during infection ? RIG-I activation requires a 5′triphosphate dsRNA structure on the nucleocapsids ? Viral nucleocapsids trigger conformational switching and oligomerization of RIG-I ? RIG-I directly binds to viral nucleocapsids containing a 5′triphosphate dsRNA structure  相似文献   

9.
In this issue, Wang et?al. (2011) show that the CRISPR endonuclease Cas6 wraps an unstructured CRISPR RNA repeat around its surface to achieve recognition and cleavage, suggesting that palindromic RNA is not a feature of many CRISPR subtypes.  相似文献   

10.
Influenza virus RNA (vRNA) promoter panhandle structures are believed to be sensed by retinoic acid-inducible gene I (RIG-I). The occurrence of mismatches in this double-stranded RNA structure raises questions about their effect on innate sensing. Our results suggest that mismatches in vRNA promoters decrease binding to RIG-I in vivo, affecting RNA/RIG-I complex formation and preventing RIG-I activation. These results can be inferred to apply to other viruses and suggest that mismatches may represent a general viral strategy to escape RIG-I sensing.  相似文献   

11.
Retinoic acid-inducible gene I (RIG-I) is a cytosolic receptor that recognizes viral RNA and activates the interferon-mediated innate antiviral response. To understand the mechanism of signal activation at the receptor level, we cloned, expressed, and purified human RIG-I containing the two caspase activation and recruitment domains (CARDs) followed by the C-terminal helicase domain. We found that recombinant RIG-I is a functional protein that interacts with double-stranded RNA with substantially higher affinity as compared with single-stranded RNA structures unless they contain a 5'-triphosphate group. Viral RNA binding to RIG-I stimulates the velocity of ATP hydrolysis by 33-fold, which at the cellular level translates into a 43-fold increase of interferon-beta expression. In contrast, the isolated ATPase/helicase domain is constitutively activated while also retaining its RNA ligand binding properties. These results support the recent model by which RIG-I signaling is autoinhibited in the absence of RNA by intra-molecular interactions between the CARDs and the C terminus. Based on pH profile and metal ion dependence experiments, we propose that the active site of RIG-I cannot efficiently accommodate divalent cations under the RNA-free repressed conformation. Overall, these results show a direct correlation between RNA binding and ATPase enzymatic function leading to signal transduction and suggest that a tight control of ATPase activity by the CARDs prevents RIG-I signaling in the absence of viral RNA.  相似文献   

12.
In this issue of Molecular Cell, two papers on the structure of murine capping enzyme guanylyltransferase (Ghosh et?al., 2011) and yeast studies of the recognition of the RNA polymerase II CTD (Schwer and Shuman, 2011) describe the mechanism of recruitment of the capping apparatus to nascent pre-mRNAs.  相似文献   

13.
In virus-infected cells, viral RNA with non-self structural pattern is recognized by DExD/Hbox RNA helicase, RIG-I. Once RIG-I senses viral RNA, it triggers a signaling cascade, resulting in the activation of genes including type I interferon, which activates antiviral responses. Overexpression of N-terminal caspase activation and recruitment domain (CARD) is sufficient to activate signaling; however basal activity of full-length RIG-I is undetectable. The repressor domain (RD), initially identified as a.a. 735–925, is responsible for diminished basal activity; therefore, it is suggested that RIG-I is under auto-repression in uninfected cells and the repression is reversed upon its encounter with viral RNA. In this report, we further delimited RD to a.a. 747–801, which corresponds to a linker connecting the helicase and the C-terminal domain (CTD). Alanine substitutions of the conserved residues in the linker conferred constitutive activity to full-length RIG-I. We found that the constitutive active mutants do not exhibit ATPase activity, suggesting that ATPase is required for de-repression but not signaling itself. Furthermore, trypsin digestion of recombinant RIG-I revealed that the wild-type, but not linker mutant conforms to the trypsin-resistant structure, containing CARD and helicase domain. The result strongly suggests that the linker is responsible for maintaining RIG-I in a “closed” structure to minimize unwanted production of interferon in uninfected cells. These findings shed light on the structural regulation of RIG-I function.  相似文献   

14.
Retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) function as cytoplasmic sensors for viral RNA to initiate antiviral responses including type I interferon (IFN) production. It has been unclear how RIG-I encounters and senses viral RNA. To address this issue, we examined intracellular localization of RIG-I in response to viral infection using newly generated anti-RIG-I antibody. Immunohistochemical analysis revealed that RLRs localized in virus-induced granules containing stress granule (SG) markers together with viral RNA and antiviral proteins. Because of similarity in morphology and components, we termed these aggregates antiviral stress granules (avSGs). Influenza A virus (IAV) deficient in non-structural protein 1 (NS1) efficiently generated avSGs as well as IFN, however IAV encoding NS1 produced little. Inhibition of avSGs formation by removal of either the SG component or double-stranded RNA (dsRNA)-dependent protein kinase (PKR) resulted in diminished IFN production and concomitant enhancement of viral replication. Furthermore, we observed that transfection of dsRNA resulted in IFN production in an avSGs-dependent manner. These results strongly suggest that the avSG is the locus for non-self RNA sensing and the orchestration of multiple proteins is critical in the triggering of antiviral responses.  相似文献   

15.
RIG-I-like receptors, including RIG-I, MDA5 and LGP2, recognize cytoplasmic viral RNA. The RIG-I protein consists of N-terminal CARDs, central RNA helicase and C-terminal domains. RIG-I activation is regulated by ubiquitination. Three ubiquitin ligases target the RIG-I protein. TRIM25 and Riplet ubiquitin ligases are positive regulators of RIG-I and deliver the K63-linked polyubiquitin moiety to RIG-I CARDs and the C-terminal domain. RNF125, another ubiquitin ligase, is a negative regulator of RIG-I and mediates K48-linked polyubiquitination of RIG-I, leading to the degradation of the RIG-I protein by proteasomes. The K63-linked polyubiquitin chains of RIG-I are removed by a deubiquitin enzyme, CYLD. Thus, CYLD is a negative regulator of RIG-I. Furthermore, TRIM25 itself is regulated by ubiquitination. HOIP and HOIL proteins are ubiquitin ligases and are also known as linear ubiquitin assembly complexes (LUBACs). The TRIM25 protein is ubiquitinated by LUBAC and then degraded by proteasomes. The splice variant of RIG-I encodes a protein that lacks the first CARD of RIG-I, and the variant RIG-I protein is not ubiquitinated by TRIM25. Therefore, ubiquitin is the key regulator of the cytoplasmic viral RNA sensor RIG-I.  相似文献   

16.
Viral infection of mammalian cells triggers the innate immune response through non-self recognition of pathogen associated molecular patterns (PAMPs) in viral nucleic acid. Accurate PAMP discrimination is essential to avoid self recognition that can generate autoimmunity, and therefore should be facilitated by the presence of multiple motifs in a PAMP that mark it as non-self. Hepatitis C virus (HCV) RNA is recognized as non-self by RIG-I through the presence of a 5′-triphosphate (5′-ppp) on the viral RNA in association with a 3′ poly-U/UC tract. Here we define the HCV PAMP and the criteria for RIG-I non-self discrimination of HCV by examining the RNA structure-function attributes that impart PAMP function to the poly-U/UC tract. We found that the 34 nucleotide poly-uridine “core” of this sequence tract was essential for RIG-I activation, and that interspersed ribocytosine nucleotides between poly-U sequences in the RNA were required to achieve optimal RIG-I signal induction. 5′-ppp poly-U/UC RNA variants that stimulated strong RIG-I activation efficiently bound purified RIG-I protein in vitro, and RNA interaction with both the repressor domain and helicase domain of RIG-I was required to activate signaling. When appended to 5′-ppp RNA that lacks PAMP activity, the poly-U/UC U-core sequence conferred non-self recognition of the RNA and innate immune signaling by RIG-I. Importantly, HCV poly-U/UC RNA variants that strongly activated RIG-I signaling triggered potent anti-HCV responses in vitro and hepatic innate immune responses in vivo using a mouse model of PAMP signaling. These studies define a multi-motif PAMP signature of non-self recognition by RIG-I that incorporates a 5′-ppp with poly-uridine sequence composition and length. This HCV PAMP motif drives potent RIG-I signaling to induce the innate immune response to infection. Our studies define a basis of non-self discrimination by RIG-I and offer insights into the antiviral therapeutic potential of targeted RIG-I signaling activation.  相似文献   

17.
<正>Dear Editor,Cumulative evidence supports the role of early-life viral infections,especially respiratory syncytial virus(RSV)and human rhinovirus(HRV),as major antecedents of childhood asthma(Lemanske,2002;Jackson et al.,2008).In this study,the x TAG respiratory viral panel FAST(RVP FAST)assay,a multiplex polymerase chain reaction(PCR)-based method(Arens et al.,2010;BaladaLlasat et al.,2011;Gharabaghi et al.,2011;Selvaraju,2012),was used to investigate the association of infec-  相似文献   

18.
RIG-I is a cytosolic receptor recognizing virus-specific RNA structures and initiates an antiviral signaling that induces the production of interferons and proinflammatory cytokines. Because inappropriate RIG-I signaling affects either viral clearance or immune toxicity, multiple regulations of RIG-I have been investigated since its discovery as the viral RNA detector. In this review, we describe the recent progress in research on the regulation of RIG-I activity or abundance. Specifically, we focus on the mechanism that modulates RIG-I-dependent antiviral response through post-translational modifications of or protein-protein interactions with RIG-I.  相似文献   

19.
20.
RIG-I recognizes molecular patterns in viral RNA to regulate the induction of type I interferons. The C-terminal domain (CTD) of RIG-I exhibits high affinity for 5' triphosphate (ppp) dsRNA as well as blunt-ended dsRNA. Structures of RIG-I CTD bound to 5'-ppp dsRNA showed that RIG-I recognizes the termini of dsRNA and interacts with the ppp through electrostatic interactions. However, the structural basis for the recognition of non-phosphorylated dsRNA by RIG-I is not fully understood. Here, we show that RIG-I CTD binds blunt-ended dsRNA in a different orientation compared to 5' ppp dsRNA and interacts with both strands of the dsRNA. Overlapping sets of residues are involved in the recognition of blunt-ended dsRNA and 5' ppp dsRNA. Mutations at the RNA-binding surface affect RNA binding and signaling by RIG-I. These results provide the mechanistic basis for how RIG-I recognizes different RNA ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号